满分5 > 高中数学试题 >

设函数f(x)=(x-1)2+blnx,其中b为常数. (1)当时,判断函数f(...

设函数f(x)=(x-1)2+blnx,其中b为常数.
(1)当manfen5.com 满分网时,判断函数f(x)在定义域上的单调性;
(2)若函数f(x)的有极值点,求b的取值范围及f(x)的极值点;
(3)求证对任意不小于3的正整数n,不等式manfen5.com 满分网都成立.
(1)首先函数的定义域为(0,+∞),然后求出函数的导数f′(x),将f′(x)变形为,再结合x>0和得f′(x)>0,可得函数f(x)在定义域(0,+∞)上单调递增. (2)方程在(0,∞)有两个不相等的实数根时,函数有极值.然后利用根的判别式算得当时,函数存在极值点,最后根据b≤0和0<b<两种情况分别得出函数的极值点; (3)由(2)可知当b=-1时,函数f(x)=(x-1)2-lnx,利用其单调性,取自变量,可以证出n≥3时,再设出函数h(x)=(x-1)-lnx,用类似的方法得出n≥3时成立,两者相结合可得对任意不小于3的正整数n,不等式都成立. 【解析】 (1)由题意知,f(x)的定义域为(0,+∞), ∴当时,f'(x)>0,函数f(x)在定义域(0,+∞)上单调递增. (2)①由(Ⅰ)得,当时,函数f(x)在定义域上无极值点. ②时,有两个相同的解,时, ∴时,函数f(x)在(-1,+∞)上无极值点. ③当时,f'(x)=0有两个不同解, ∴(i)b≤0时,,, 此时f'(x),f(x)随x在定义域上的变化情况如表: x (0,x2) x2 (x2,+∞) f'(x) - + f(x) 减 极小值 增 由此表可知:∵b≤0时,f(x)有惟一极小值点, (ii)当时,0<x1<x2<1 此时,f'(x),f(x)随x的变化情况如下表: x (0,x1) x1 (x1,x2) x2 (x2,+∞) f'(x) + - + f(x) 增 极大值 减 极小值 增 由此表可知:时,f(x)有一个极大值和一个极小值点; 综上所述:当且仅当时f(x)有极值点; 当b≤0时,f(x)有惟一最小值点; 当时,f(x)有一个极大值点和一个极小值点 (3)由(2)可知当b=-1时,函数f(x)=(x-1)2-lnx, 此时f(x)有惟一极小值点 且    令函数h(x)=(x-1)-lnx(x>0)              
复制答案
考点分析:
相关试题推荐
数列{an}是以a为首项,q为公比的等比数列.令bn=1-a1-a2-…-an,cn=2-b1-b2-…-bn,n∈N*
(1)试用a、q表示bn和cn
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列.若存在,求出实数对(a,q)和{cn};若不存在,请说明理由.
查看答案
已知抛物线C:y=ax2(a为非零常数)的焦点为F,点P为抛物线C上一个动点,过点P且与抛物线C相切的直线记为L.
(1)求F的坐标;
(2)当点P在何处时,点F到直线L的距离最小?
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE;
(3)求二面角A-PD-C的平面角的正弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求f(x)的最值;
(2)求f(x)的单调增区间.
查看答案
设集合A={x|x2<4},manfen5.com 满分网
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.