选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角 坐标系,直线l的参数方程为
(t为参数).
(I)写出直线l与曲线C的直角坐标系下的方程;
(II)设曲线C经过伸缩变换
得到曲线C'设曲线C'上任一点为M(x,y),求
的取值范围.
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;
(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.
查看答案
设函数
.
(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x
1,x
2∈[1,2],恒有
成立,求实数m的取值范围.
查看答案
已知椭圆E:
的右焦点F,过原点和x轴不重合的直线与椭圆E相交于A,B两点,且
,|AB|最小值为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若圆:
的切线l与椭圆E相交于P,Q两点,当P,Q两点横坐标不相等时,问:OP与OQ是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
查看答案
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF.
查看答案
某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:
所用时间(分钟) | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) |
人数 | 25 | 50 | 15 | 5 | 5 |
公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t (分钟)的关系是
,其中
表示不超过
的最大整数.以样本频率为概率:
(I)求公司一名职工每月用于路途补贴不超过300元的概率;
(II)估算公司每月用于路途补贴的费用总额(元).
查看答案