选修4-1:几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若
,求
的值.
考点分析:
相关试题推荐
已知a>0,函数f(x)=ax
2-x,g(x)=ln(ax)
(1)若直线y=kx-1与函数f(x)、g(x)相切于同一点,求实数a,k的值;
(2)是否存在实数a,使得f(x)≥g(x)成立,若存在,求出实数a的取值集合,不存在说明理由.
查看答案
椭圆E:
=1(a>b>0)离心率为
,且过P(
,
).
(1)求椭圆E的方程;
(2)已知直线l过点M(-
,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直 线l与椭圆E交于A,B两点,与y轴交与D点,若
=
,
,且λ+μ=
,求抛物线C的标准方程.
查看答案
在三棱柱ABC-A
1B
1C
1中,侧棱CC
1⊥底面ABC,∠ACB=90°,且AC=BC=CC
1,O为AB
1中点.
(1)求证:CO⊥平面ABC
1;
(2)求直线BC与平面ABC
1所成角的正弦值.
查看答案
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
月收入(单位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
| 月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 |
赞成 | a= | c= | |
不赞成 | b= | d= | |
合计 | | | |
(Ⅱ)若对在[15,25),[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列及数学期望.
参考公式:
,其中n=a+b+c+d.
参考值表:
P(K^2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?
查看答案