依题意,可求得a3,1=3,a3,2=5,a3,3=8,a3,4=12,…由于后一项减去前一项的差构成等差数列,利用累加法即可求得a3,n.最后利用极限公式即可得出答案.
【解析】
依题意,a3,1=3,a3,2=a3,1+a2,1=3+2=5,a3,3=a3,2+a2,2=5+3=8,a3,4=a3,3+a2,3=8+4=12,…
∴a3,2-a3,1=5-3=2,(1)
a3,3-a3,2=8-5=3,(2)
a3,4-a3,3=12-8=4,(3)
…
a3,n-a3,n-1=n,(n-1)
将这(n-1)个等式左右两端分别相加得:
a3,n-a3,1=2+3+…+(n-1)==n2+n-1,
∴a3,n=n2+n-1+3=n2+n+2.
则==.
故答案为:.