满分5 >
高中数学试题 >
若集合A={1,m-2},且A∩B={2},则实数m的值为 .
若集合A={1,m-2},且A∩B={2},则实数m的值为 .
考点分析:
相关试题推荐
设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若
的定义域为R,求实数m的取值范围.
查看答案
(选修4-4:坐标系与参数方程)在直角坐标系中,直线l的参数方程为
t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为
.
(I)求曲线C的直角坐标方程;
(II)求直线l被曲线C所截得的弦长.
查看答案
选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE
2=EF•EC.
(1)求证:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.
查看答案
已知f(x)=ax-1nx,x∈(0,e],g(x)=
,其中e是自然常数,a∈R.
(Ⅰ)当a=1时,研究f(x)的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+
;
(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
查看答案
如图,已知椭圆
的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.
(Ⅰ)若点G的横坐标为
,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S
1,△OED(O为原点)的面积为S
2.试问:是否存在直线AB,使得S
1=S
2?说明理由.
查看答案