满分5 > 高中数学试题 >

设函数f(x)=x2-mlnx,h(x)=x2-x+a. (1)当a=0时,f(...

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2-mlnx≥x2-x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围. (2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,即:k(x)=x-2lnx-a,设y1=x-2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围. (3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可. 【解析】 (1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立, 即:x2-mlnx≥x2-x, mlnx≤x,即:m≤在(1,+∞)上恒成立, 因为在(1,+∞)上的最小值为:e, ∴m≤e. 实数m的取值范围:m≤e (2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点, 即:k(x)=x-2lnx-a, 设y1=x-2lnx,y2=a,分别画出它们的图象, 由图得: 实数a的取值范围(2-2ln2,3-2ln3]; (3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性, 由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可. ∵f(x)=x2-mlnx ∴f′(x)=2x-m×,将x=代入得: 1-2m=0, ∴m= 故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
查看答案
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.
查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
查看答案
用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下表),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有    种.
123
456
789
查看答案
已知双曲线C1manfen5.com 满分网(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,则双曲线C1的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.