满分5 > 高中数学试题 >

2011年10月17日,永春一中隆重的举行105周年校庆,为了搞好接待工作,校庆...

2011年10月17日,永春一中隆重的举行105周年校庆,为了搞好接待工作,校庆组委会在高三年级招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图的茎叶图(单位:cm).男生身高在175 cm以上(包括175 cm)定义为“高个子”,身高在175 cm以下(不包括175 cm)定义为“非高个子”,女生身高在170 cm以上(包括170 cm)定义为“高个子”,身高在170 cm以下(不包括170 cm)定义为“非高个子”且只有“女高个子”才担任“礼仪小姐”.
(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中提取4人,再从这4人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,请写出X的分布列,并求X的数学期望.

manfen5.com 满分网
(I)由题意及茎叶图,有“高个子”15人,“非高个子”15人,利用用分层抽样的方法,每个人被抽中的概率是,利用对立事件即可; (II)由于从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,利用离散型随机变量的定义及题意可知ξ的取值为0,1,2,3在利用古典概型的概率公式求出每一个值对应事件的概率,有期望的公式求出即可. 【解析】 (I)根据茎叶图,有“高个子”15人,“非高个子”15人, 用分层抽样的方法,每个人被抽中的概率是 =, 所以选中的“高个子”有15×=2人,“非高个子”有15×=2人. 用事件A表示“至少有一名“高个子”被选中”,则它的对立事件 表示“没有一名“高个子”被选中”, 则P(A)=1-=. 因此,至少有一人是“高个子”的概率是 . (II)依题意,X的取值为0,1,2,3. P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==. 因此,X的分布列如下: X 1 2 3 p ∴EX=0×+1×+2×+3×=.
复制答案
考点分析:
相关试题推荐
记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,manfen5.com 满分网,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,manfen5.com 满分网
④对某个正整数k,若xk+1≥xk,则manfen5.com 满分网
其中的真命题有    .(写出所有真命题的编号) 查看答案
某同学由于求不出积分manfen5.com 满分网的准确值,于是他采用“随机模拟方法”和利用“积分的几何意义”来近似计算积分manfen5.com 满分网.他用计算机分别产生10个在[1,e]上的均匀随机数xi(1≤i≤10)和10个在[0,1]上的均匀随机数yi(1≤i≤10),其数据记录为如下表的前两行
x2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
y0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnx0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
则依此表格中的数据,可得积分manfen5.com 满分网的一个近似值为    查看答案
在△ABC中,角A、B、C所对边的长分别为a、b、c,若a2+b2=2c2,则cosC的最小值等于    查看答案
如图的程序框图中,如果输入x=10,输出y=4,则在空白处填入   
(写出符合条件的所有序号)①x=x-1 ②x=x-2 ③x=x-3 ④x=x-4.
manfen5.com 满分网 查看答案
已知复数z=(3+i)2(i为虚数单位),则|manfen5.com 满分网|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.