满分5 > 高中数学试题 >

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
(Ⅰ)根据椭圆的离心率为,可得,利用椭圆的短半轴为半径的圆与直线相切,可得b=,从而可求椭圆的方程; (Ⅱ)由题意知直线PB的斜率存在,设方程为y=k(x-4)代入椭圆方程,利用韦达定理,表示出直线AE的方程,令y=0,化简即可得到结论. 【解析】 (Ⅰ)∵椭圆的离心率为,∴ ∴ ∵椭圆的短半轴为半径的圆与直线相切. ∴b= ∴a2=4,b2=3 ∴椭圆的方程为; (Ⅱ)由题意知直线PB的斜率存在,设方程为y=k(x-4)代入椭圆方程可得(4k2+3)x2-32k2x+64k2-12=0 设B(x1,y1),E(x2,y2),则A(x1,-y1), ∴x1+x2=,x1x2= 又直线AE的方程为y-y2= 令y=0,则x=x2-===1 ∴直线AE过x轴上一定点Q(1,0).
复制答案
考点分析:
相关试题推荐
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC,PC的中点,AB=2,AP=2.
(I)求证:AE⊥PD;
(II)求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
某高中社团进行社会实验,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到各年龄段人数的频率分布直方图如图所示,其中在[40,45)岁、[45,50)岁年龄段人数中,“时尚族”人数分别占本组人数的40%、30%.
manfen5.com 满分网
请完成以下问题:
(I)求[40,45)岁与[45,50)岁年龄段“时尚族”的人数;
(II)从[40,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取9人参加网络时尚达人大赛,其中选取3人作为领队,已选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
查看答案
已知等差数列{an}的前n项和为An,且满足a1+a5=6,A9=63;数列{bn}的前n项和为Bn,且满足manfen5.com 满分网
(I)求数列{an},{bn}的通项公式ab,bn
(II)设cn=an•bn求数列{cn}的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网sin(x-ϕ)cos(x-ϕ)-cos2(x-ϕ)+manfen5.com 满分网(0≤ϕ≤manfen5.com 满分网)为偶函数.
(I)求函数的最小正周期及单调减区间;
(II)把函数的图象向右平移manfen5.com 满分网个单位(纵坐标不变),得到函数g(x)的图象,求函数g(x)的对称中心.
查看答案
给出下列命题:
①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②命题“若am2<bm2,则a<b”的逆命题是真命题;
③f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2*.则x<0时的解析式为f(x)=-2-x
④若随机变量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是    .(写出所有你认为正确命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.