根据三角形的内角和定理得到三个角之和为π,表示出B,代入已知的等式中,利用诱导公式化简,再利用二倍角的正弦函数公式及和差化积公式变形,提取2cosA,等式左边变为积的形式,根据两数之积为0,至少有一个为0,可得cosA=0或sinA=sinC,由cosA=0,根据A为三角形的内角,可得A为直角,但三角形为锐角三角形,矛盾,故舍去;由sinA=sinC,根据A和C都为锐角,可得A=C,又B为,可得三角形为等边三角形,且边长为2,进而求出等边三角形的面积即可.
【解析】
∵A+B+C=π,∴B=π-(A+C),
∴sinB=sin[π-(A+C)]=sin(A+C),
代入sin2A+sin(A-C)-sinB=0得:sin2A-[sin(A+C)-sin(A-C)]=0,
变形得:2sinAcosA-2cosAsinC=0,即2cosA(sinA-sinC)=0,
所以cosA=0或sinA=sinC,
解得A=(又锐角△ABC,此情况不满足,舍去)或A=C,
所以A=C,又B=,b=2,
所以△ABC为边长为2的等边三角形,
则△ABC的面积S=×22=.
故答案为: