(I)依题意,可求得an+1-an为定值,利用定义判断即可;
(II)由(Ⅰ),结合题意可求得bn=n•2n,利用错位相减法即可求得数列{bn}的前n项和Tn.
【解析】
(I)∵an=1+++…+=1+=,
∴an+1-an=-=,又a1=1,
∴数列{an}是以1为首项,为公差的等差数列;
(II)∵bn===n•2n,
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=-n•2n+1
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.