满分5 > 高中数学试题 >

给出下列四个结论: ①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x...

给出下列四个结论:
①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是    (填上所有正确结论的序号)
①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”,可由命题的否定的书写规则进行判断; ②“若am2<bm2,则a<b”的逆命题为真,可由不等式的运算规则进行判断; ③函数f(x)=x-sinx(x∈R)有3个零点,可由函数的图象进行判断; ④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x),可由函数单调性与导数的关系进行判断. 【解析】 ①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”,此是一个正确命题; ②“若am2<bm2,则a<b”的逆命题为真,由于其逆命题是“若a<b,则am2<bm2”,当m=0时不成立,故逆命题为真不正确; ③函数f(x)=x-sinx(x∈R)有3个零点,由函数的图象知,此函数仅有一个零点,故命题不正解; ④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x),由于两个函数是一奇一偶,且在x>0时,f′(x)>0,g′(x)>0,故当x<0,,f′(x)>g′(x),成立,此命题是真命题. 综上①④是正解命题 故答案为①④
复制答案
考点分析:
相关试题推荐
点P(x,y)满足manfen5.com 满分网,点A的坐标是(1,2),若∠AOP=θ,则|manfen5.com 满分网|cosθ的最大值是    查看答案
由曲线y=x2和直线x=0,x=1,以及y=0所围成的图形面积是    查看答案
已知正数a,b满足a+b=ab,则a+b的最小值为    查看答案
设函数f(x)=manfen5.com 满分网-manfen5.com 满分网,[x]表示不超过x的最大整数,则函数y=[f(x)]+[f(-x)]的值域为( )
A.{0}
B.{-2,0}
C.{-1,0,1}
D.{-1,0}
查看答案
已知点M(-3,0)、N(3,0)、B(1,0),动圆C与直线MN切于点B,过M、N与圆C相切的两直线相交于点P,则P点的轨迹方程为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.