连接NF,设MN交x轴于点B,根据双曲线渐近线方程结合图形的对称性,求出N(,),再由|NF|=c在Rt△BNF中利用勾股定理建立关于a、b、c的关系式,化简整理可得c=2a,由此即可得到该双曲线的离心率.
【解析】
连接NF,设MN交x轴于点B
∵⊙F中,M、N关于OF对称,
∴∠NBF=90°且|BN|=|MN|==,
设N(m,),可得=,得m=
Rt△BNF中,|BF|=c-m=
∴由|BF|2+|BN|2=|NF|2,得()2+()2=c2
化简整理,得b=c,可得a=,故双曲线C的离心率e==2
故选:C