满分5 > 高中数学试题 >

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)...

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.
(1)根据f(x)=cosx的最大值为1,可得f1(x)、f2(x)的解析式. (2)根据函数f(x)=x2在x∈[-1,4]上的值域,先写出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案. (3)先对函数f(x)进行求导判断函数的单调性,进而写出f1(x)、f2(x)的解析式,然后再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案. 【解析】 (Ⅰ)由题意可得:f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π]. (Ⅱ), 当x∈[-1,0]时,1-x2≤k(x+1),∴k≥1-x,k≥2; 当x∈(0,1)时,1≤k(x+1),∴,∴k≥1; 当x∈[1,4]时,x2≤k(x+1),∴,∴. 综上所述,∴ 即存在k=4,使得f(x)是[-1,4]上的4阶收缩函数. (Ⅲ)f'(x)=-3x2+6x=-3x(x-2),令f'(x)=0得x=0或x=2. 函数f(x)的变化情况如下: 令f(x)=0,解得x=0或3. (ⅰ)b≤2时,f(x)在[0,b]上单调递增, 因此,f2(x)=f(x)=-x3+3x2,f1(x)=f(0)=0. 因为f(x)=-x3+3x2是[0,b]上的2阶收缩函数, 所以,①f2(x)-f1(x)≤2(x-0)对x∈[0,b]恒成立; ②存在x∈[0,b],使得f2(x)-f1(x)>(x-0)成立. ①即:-x3+3x2≤2x对x∈[0,b]恒成立, 由-x3+3x2≤2x,解得:0≤x≤1或x≥2, 要使-x3+3x2≤2x对x∈[0,b]恒成立,需且只需0<b≤1. ②即:存在x∈[0,b],使得x(x2-3x+1)<0成立. 由x(x2-3x+1)<0得:x<0或, 所以,需且只需. 综合①②可得:. (ⅱ)当b>2时,显然有,由于f(x)在[0,2]上单调递增, 根据定义可得:,, 可得, 此时,f2(x)-f1(x)≤2(x-0)不成立. 综合ⅰ)ⅱ)可得:. 注:在ⅱ)中只要取区间(1,2)内的一个数来构造反例均可,这里用只是因为简单而已.
复制答案
考点分析:
相关试题推荐
已知点F是抛物线C:y2=x的焦点,S是抛物线C在第一象限内的点,且|SF|=manfen5.com 满分网
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与x轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交x轴于点E,若|EM|=manfen5.com 满分网|NE|,求cos∠MSN的值.

manfen5.com 满分网 查看答案
已知数列{an+1}满足an+1=2an-1且n,数列{bn}的前n项和为Sn
(1)求数列{an}的通项an; (2)求Sn
(3)设f(x)=(x-2n+1)ln(x-2n+1)-x(n∈N*),求证:f(x)≥manfen5.com 满分网
查看答案
manfen5.com 满分网如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)求直线FD与平面ABCD所成的角;
(2)求点D到平面BCF的距离;
(3)求二面角B-FC-D的大小.
查看答案
在△ABC中,a,b,c分别为角A,B,C所对的三边.
(1)若a=b,sinB=sin(A+60°),求角A;
(2)若BC=manfen5.com 满分网,A=manfen5.com 满分网,设B=x,△ABC的面积为y,求函数y=f(x)的关系式及其最值,并确定此时x的值.
查看答案
四川灾后重建工程督导评估小组五名专家被随机分配到A、B、C、D四所不同的学校进行重建评估工作,要求每所学校至少有一名专家.
(1)求评估小组中甲、乙两名专家同时被分配到A校的概率;
(2)求评估小组中甲、乙两名专家不在同一所学校的概率;
(3)设随机变量ξ为这五名专家到A校评估的人数,求ξ的数学期望Eξ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.