设A(x
1,y
1),B(x
2,y
2)是椭圆
上的两点,已知向量
=(
,
),
=(
,
),若
=0且椭圆的离心率e=
,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
考点分析:
相关试题推荐
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积.
(Ⅱ)若N是BC的中点,求证:AN∥平面CME;
(Ⅲ)求证:平面BDE⊥平面BCD.
查看答案
有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?
查看答案
已知f (x)=
sin2x-cos
2-
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
,f (C)=0,若
=(1,sinA)与
=(2,sinB)共线,求a,b的值.
查看答案
已知数列{a
n}的前n项和为S
n,S
n+1=4a
n-2,且a
1=2.
(Ⅰ) 求证:对任意n∈N
*,a
n+1-2a
n为常数C,并求出这个常数C;
(Ⅱ)如果
,求数列{b
n}的前n项的和.
查看答案
若f(x)满足f(x+y)=f(x)+f(x),则可写出满足条件的一个函数解析式f(x)=2x.类比可以得到:若定义在R上的函数g(x),满足(1)g(x
1+x
2)=g(x
1)•g(x
2);(2)g(1)=3;(3)∀x
1<x
2,g(x
1)<g(x
2),则可以写出满足以上性质的一个函数解析式为
.
查看答案