满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量=(,),=(,),...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(1)依题意可求得b,进而根据离心率求得a,则椭圆方程可得. (2)先看当直线AB斜率不存在时,即x1=x2,y1=y2,根据=0代入求得x12-=0把点A代入椭圆方程,求得A点横坐标和纵坐标的绝对值,进而求得△AOB的面积的值;当直线AB斜率存在时:设AB的方程为y=kx+b与椭圆方程联立消去y,根据伟大定理求得x1+x2和x1x2的表达式代入=0中整理可求得2b2-k2=4代入三角形面积公式中求得求得△AOB的面积的值为定值.最后综合可得答案. 【解析】 (1)依题意知2b=2,∴b=1,e=== ∴a=2,c== ∴椭圆的方程为 (2)①当直线AB斜率不存在时,即x1=x2,y1=y2, ∵=0 ∴x12-=0 ∴y12=4x12 又A(x1,y1)在椭圆上,所以x12+=1 ∴|x1|=,|y1|= s=|x1||y1-y2|=1 所以三角形的面积为定值. ②当直线AB斜率存在时:设AB的方程为y=kx+b 消去y得(k2+4)x2+2kbx+b2-4=0 ∴x1+x2=,x1x2=,△=(2kb)2-4(k2+4)(b2-4)>0 而=0, ∴x1x2+=0 即x1x2+=0代入整理得 2b2-k2=4 S=|AB|=|b|= ===1 综上三角形的面积为定值1.
复制答案
考点分析:
相关试题推荐
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积.
(Ⅱ)若N是BC的中点,求证:AN∥平面CME;
(Ⅲ)求证:平面BDE⊥平面BCD.

manfen5.com 满分网 查看答案
有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?
查看答案
已知f (x)=manfen5.com 满分网sin2x-cos2-manfen5.com 满分网,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=manfen5.com 满分网,f (C)=0,若manfen5.com 满分网=(1,sinA)与manfen5.com 满分网=(2,sinB)共线,求a,b的值.
查看答案
已知数列{an}的前n项和为Sn,Sn+1=4an-2,且a1=2.
(Ⅰ) 求证:对任意n∈N*,an+1-2an为常数C,并求出这个常数C;
(Ⅱ)如果manfen5.com 满分网,求数列{bn}的前n项的和.
查看答案
若f(x)满足f(x+y)=f(x)+f(x),则可写出满足条件的一个函数解析式f(x)=2x.类比可以得到:若定义在R上的函数g(x),满足(1)g(x1+x2)=g(x1)•g(x2);(2)g(1)=3;(3)∀x1<x2,g(x1)<g(x2),则可以写出满足以上性质的一个函数解析式为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.