满分5 > 高中数学试题 >

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠...

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)证明:SA⊥BC;
(Ⅱ)求直线SD与平面SBC所成角的大小.
manfen5.com 满分网
解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC. (Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为. 解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O-xyz,通过证明,推出SA⊥BC. (Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为. 解法一: (1)作SO⊥BC,垂足为O,连接AO, 由侧面SBC⊥底面ABCD,得SO⊥底面ABCD. 因为SA=SB,所以AO=BO, 又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO, 由三垂线定理,得SA⊥BC. (Ⅱ)由(Ⅰ)知SA⊥BC, 依题设AD∥BC, 故SA⊥AD,由,,. 又,作DE⊥BC,垂足为E, 则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角. 所以,直线SD与平面SBC所成的角为. 解法二: (Ⅰ)作SO⊥BC,垂足为O,连接AO, 由侧面SBC⊥底面ABCD,得SO⊥平面ABCD. 因为SA=SB,所以AO=BO. 又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB. 如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O-xyz, 因为,, 又,所以,,.S(0,0,1),,,,所以SA⊥BC. (Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,, 所以,直线SD与平面SBC所成的角为.
复制答案
考点分析:
相关试题推荐
某高校的自主招生考试数学试卷共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜.对于这8道选择题,试求:
(1)该考生得分为40分的概率;
(2)该考生所得分数ξ的分布列及数学期望Eξ.
查看答案
已知数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网,求数列{bn}的通项公式;
(Ⅲ)令manfen5.com 满分网(n∈N*),求数列{cn}的前n项和Tn
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC;
(1)求角B的大小;
(2)设manfen5.com 满分网的最大值是5,求k的值.
查看答案
给出下列四个命题:
①过平面外一点作与该平面成θ角的直线一定有无穷多条;
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
③对确定的两条异面直线,过空间任意一点有且只有唯一一个平面与这两条异面直线都平行;
④对两条异面直线,都存在无穷多个平面与这两条异面直线所成的角相等.
其中正确的命题的序号是     .(请把所有正确命题的序号都填上) 查看答案
如图,点P在椭圆manfen5.com 满分网上,F1、F2分别是椭圆的左、右焦点,过点P作椭圆右准线的垂线,垂足为M,若四边形PF1F2M为菱形,则椭圆的离心率是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.