满分5 > 高中数学试题 >

已知直线l过点(-2,0),当直线l与圆x2-2x+y2=0有两个交点时,其斜率...

已知直线l过点(-2,0),当直线l与圆x2-2x+y2=0有两个交点时,其斜率k的取值范围是( )
A.(-2manfen5.com 满分网,2manfen5.com 满分网
B.(-manfen5.com 满分网manfen5.com 满分网
C.(-manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
D.(-manfen5.com 满分网manfen5.com 满分网
由已知中直线l过点(-2,0),验证斜率不存在时,不满足已知条件,故可设出直线的点斜式方程,代入圆的方程后,根据两直线相交,方程有两根,△>0,可以构造关于k的不等式,解不等式即可得到斜率k的取值范围. 【解析】 由已知中可得圆x2-2x+y2=0的加以坐标O(1,0),半径为1, 若直线l的斜率不存在,则直线l与圆相离, 故可设直线l的斜率为k, 则l:y=k(x+2) 代入圆x2-2x+y2=0的方程可得 (k2+1)x2+(4k2-2)x+4k2=0…① 若直线l与圆有两个交点,则方程①有两个根 则△>0 解得-<k< 故选C
复制答案
考点分析:
相关试题推荐
设f(n)=(manfen5.com 满分网n+(manfen5.com 满分网n(n∈Z),则集合{f(n)}中元素的个数为( )
A.1
B.2
C.3
D.无数个
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点,且manfen5.com 满分网(O为坐标原点).
(1)求椭圆C的方程;
(2)过点manfen5.com 满分网且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
查看答案
函数f(x)=ax3-6ax2+3bx+b,其图象在x=2处的切线方程为3x+y-11=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数y=f(x)的图象与manfen5.com 满分网的图象有三个不同的交点,求实数m的取值范围;
(Ⅲ)是否存在点P,使得过点P的直线若能与曲线y=f(x)围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P点的坐标;若不存在,说明理由.
查看答案
四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)证明:SA⊥BC;
(Ⅱ)求直线SD与平面SBC所成角的大小.
manfen5.com 满分网
查看答案
某高校的自主招生考试数学试卷共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜.对于这8道选择题,试求:
(1)该考生得分为40分的概率;
(2)该考生所得分数ξ的分布列及数学期望Eξ.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.