求出f(x)的导函数,由存在实数xo使f′(xo)=0,又f(x)是R上的增函数,得到导函数大于等于0恒成立,根据导函数为开口向上的抛物线可知,根的判别式小于等于0时满足题意,列出关于m的不等式,求出不等式的解集即可得到m的范围.
【解析】
由f(x)=x3+mx2+x+5,得到f′(x)=3x2+2mx+1,又存在实数xo使f′(xo)=0,
因为f(x)是R上的增函数,所以f′(x)=3x2+2mx+1≥0恒成立,
则△=4m2-12≤0,即(m+)(m-)≤0,解得-≤m≤,
所以m的取值范围是[-,]
故选D