满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=B...

manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为manfen5.com 满分网,并求此时二面角A-PC-B的余弦值.
(I)以点B为坐标原点,分别以直线BA、BC、BB1为x轴、y轴建立空间直角坐标系Oxyz,设AB=2,欲证PA⊥B1C,只需它们对应的坐标,计算它们的数量积,使数量积为零即可; (II)先求出平面B1C的一个法向量,先求直线PA与法向量的夹角的余弦值然后得到直线与平面所成角的正弦值,可求出k的值,最后求出平面BPC的一个法向量,根据两法向量的夹角的余弦值求出二面角A-PC-B的余弦值. 【解析】 以点B为坐标原点,分别以直线BA、BC、BB1为x轴、y轴建立空间直角坐标系Oxyz. (I)设AB=2,则AB=BC=PA=2 根据题意得: 所以. ∵,∴PA⊥B1C. (II)设AB=2,则, 根据题意:A(2,0,0),C(0,2,0), 又因为, 所以, ∴, ∴, ∵AB⊥平面B1C, 所以由题意得, 即,即, ∵k>0,解得k=. 即时,直线PA与平面BB1C1C所成的角的正弦值为.(8分) ∵B1P⊥面APC,∴平面APC的法向量. 设平面BPC的一个法向量为, ∵ 由,得, ∴ 所以此时二面角A-PC-B的余弦值是.(12分)
复制答案
考点分析:
相关试题推荐
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
产品\概率\工序第一工序第二工序
0.80.85
0.750.8
(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;
产品\利润\等级一等二等
5(万元)2.5(万元)
2.5(万元)1.5(万元)
(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
产品\用量\项目工人(名)资金(万元)
85
210

查看答案
已知函数manfen5.com 满分网
(1)若方程f(x)=0在manfen5.com 满分网上有解,求m的取值范围;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,当(1)中的m取最大值且f(A)=-1,b+c=2时,求a的最小值.
查看答案
给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②命题“∀x∈R,x2≥0”的否定是“∃x∈R,x2≤0”;
③若随机变量ξ~N(2,σ2)且P(1≤ξ≤3)=0.4,则P(ξ≥3)=0.3;
④已知n个散点Ai(xi,yi),(i=1,2,3,…,n)的线性回归方程为manfen5.com 满分网,若manfen5.com 满分网,(其中manfen5.com 满分网manfen5.com 满分网),则此回归直线必经过点(manfen5.com 满分网).其中正确命题是     查看答案
学校计划在三天里安排三节不同的选修课,且在同一天安排的选修课不超过2节,则不同的选修课安排方案有     种. 查看答案
已知manfen5.com 满分网,则manfen5.com 满分网展开式中的常数项为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.