满分5 > 高中数学试题 >

已知函数. (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;...

已知函数manfen5.com 满分网
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在manfen5.com 满分网上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有manfen5.com 满分网
(1)对函数f(x)进行求导,令导函数大于等于0在[1,+∞)上恒成立即可求出a的范围. (2)将a=1代入函数f(x)的解析式,判断其单调性进而得到最大值和最小值. (3)先判断函数f(x)的单调性,令代入函数f(x)根据单调性得到不等式,令n=1,2,…代入可证. 【解析】 (1)∵ ∴ ∵函数f(x)在[1,+∞)上为增函数 ∴对x∈[1,+∞)恒成立, ∴ax-1≥0对x∈[1,+∞)恒成立,即对x∈[1,+∞)恒成立 ∴a≥1 (2)当a=1时,, ∴当时,f′(x)<0,故f(x)在上单调递减; 当x∈(1,2]时,f′(x)>0,故f(x)在x∈(1,2]上单调递增, ∴f(x)在区间上有唯一极小值点,故f(x)min=f(x)极小值=f(1)=0 又 ∵e3>16 ∴ ∴f(x)在区间上的最大值 综上可知,函数f(x)在上的最大值是1-ln2,最小值是0. (3)当a=1时,,, 故f(x)在[1,+∞)上为增函数. 当n>1时,令,则x>1,故f(x)>f(1)=0 ∴,即 ∴ ∴ ∴ 即对大于1的任意正整数n,都有
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,已知manfen5.com 满分网,若实数λ使得manfen5.com 满分网(O为坐标原点)
(1)求P点的轨迹方程,并讨论P点的轨迹类型;
(2)当manfen5.com 满分网时,若过点B(0,2)的直线l与(1)中P点的轨迹交于不同的两点E,F(E在B,F之间),试求△OBE与OBF面积之比的取值范围.
查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为manfen5.com 满分网,并求此时二面角A-PC-B的余弦值.
查看答案
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
产品\概率\工序第一工序第二工序
0.80.85
0.750.8
(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;
产品\利润\等级一等二等
5(万元)2.5(万元)
2.5(万元)1.5(万元)
(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
产品\用量\项目工人(名)资金(万元)
85
210

查看答案
已知函数manfen5.com 满分网
(1)若方程f(x)=0在manfen5.com 满分网上有解,求m的取值范围;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,当(1)中的m取最大值且f(A)=-1,b+c=2时,求a的最小值.
查看答案
给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②命题“∀x∈R,x2≥0”的否定是“∃x∈R,x2≤0”;
③若随机变量ξ~N(2,σ2)且P(1≤ξ≤3)=0.4,则P(ξ≥3)=0.3;
④已知n个散点Ai(xi,yi),(i=1,2,3,…,n)的线性回归方程为manfen5.com 满分网,若manfen5.com 满分网,(其中manfen5.com 满分网manfen5.com 满分网),则此回归直线必经过点(manfen5.com 满分网).其中正确命题是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.