满分5 > 高中数学试题 >

如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆...

manfen5.com 满分网如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.
(1)要证明四点共圆,可根据圆内接四边形判定定理:四边形对角互补,而由AP是⊙O的切线,P为切点,易得∠APO=90°,故解答这题的关键是证明,∠AMO=90°,根据垂径定理不难得到结论. (2)由(1)的结论可知,∠OPM+∠APM=90°,只要能说明∠OPM=∠OAM即可得到结论. 证明:(Ⅰ)连接OP,OM. 因为AP与⊙O相切于点P,所以OP⊥AP. 因为M是⊙O的弦BC的中点,所以OM⊥BC. 于是∠OPA+∠OMA=180°. 由圆心O在∠PAC的内部,可知四边形M的对角互补, 所以A,P,O,M四点共圆. 【解析】 (Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM. 由(Ⅰ)得OP⊥AP. 由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°. 又∵A,P,O,M四点共圆 ∴∠OPM=∠OAM 所以∠OAM+∠APM=90°.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在manfen5.com 满分网上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有manfen5.com 满分网
查看答案
在平面直角坐标系中,已知manfen5.com 满分网,若实数λ使得manfen5.com 满分网(O为坐标原点)
(1)求P点的轨迹方程,并讨论P点的轨迹类型;
(2)当manfen5.com 满分网时,若过点B(0,2)的直线l与(1)中P点的轨迹交于不同的两点E,F(E在B,F之间),试求△OBE与OBF面积之比的取值范围.
查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为manfen5.com 满分网,并求此时二面角A-PC-B的余弦值.
查看答案
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
产品\概率\工序第一工序第二工序
0.80.85
0.750.8
(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;
产品\利润\等级一等二等
5(万元)2.5(万元)
2.5(万元)1.5(万元)
(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
产品\用量\项目工人(名)资金(万元)
85
210

查看答案
已知函数manfen5.com 满分网
(1)若方程f(x)=0在manfen5.com 满分网上有解,求m的取值范围;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,当(1)中的m取最大值且f(A)=-1,b+c=2时,求a的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.