满分5 > 高中数学试题 >

在一次数学实践活动课上,老师给一个活动小组安排了这样的一个任务:设计一个方案,将...

在一次数学实践活动课上,老师给一个活动小组安排了这样的一个任务:设计一个方案,将一块边长为4米的正方形铁片,通过裁剪、拼接的方式,将它焊接成容积至少有5立方米的长方体无盖容器(只有一个下底面和侧面的长方体).该活动小组接到任务后,立刻设计了一个方案,如下图所示,按图1在正方形铁片的四角裁去四个相同的小正方形后,将剩下的部分焊接成长方体(如图2).请你分析一下他们的设计方案切去边长为多大的小正方形后能得到的最大容积,最大容积是多少?是否符合要求?若不符合,请你帮他们再设计一个能符合要求的方案,简单说明操作过程和理由.manfen5.com 满分网
(1)设切去正方形边长为x,利用长方体的体积公式求得其容积表达式,再利用导数研究它的极值,进而得出此函数的最大值即可.(2)在(1)中之所以不符合要求,主要原因是因为裁去四个相同的小正方形形成资源浪费,没有充分利用现有材料,重新设计方案时,必须充分考虑材料不浪费. 【解析】 (1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x, 所以V1=(4-2x)2•x=4(x3-4x2+4x)(0<x<2).(4分) ∴V1′=4(3x2-8x+4),(5分) 令V1′=0,即4(3x2-8x+4)=0,解得x1=,x2=2(舍去).(7分) ∵V1在(0,2)内只有一个极值, ∴当x=时,V1取得最大值.<5,即不符合要求(9分) (2)重新设计方案如下: 如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.新焊长方体容器底面是一个长方形,长为3,宽为2,此长方体容积V2=3×2×1=6,显然V2>5. 故第二种方案符合要求. (13分) 注:第二问答案不唯一.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=1.
(Ⅰ)求证:A=B;
(Ⅱ)求边长c的值;
(Ⅲ)若|manfen5.com 满分网+manfen5.com 满分网|=manfen5.com 满分网,求△ABC的面积.
查看答案
已知命题p:∀x∈R,cos2x+sinx+a≥0,命题q:∃x∈R,ax2-2x+a<0,命题p∨q为真,命题p∧q为假.求实数a的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小值以及对应的x值.
(2)若函数f(x)关于点(a,0)(a>0),求a的最小值.
(3)做出函数y=f(x)在[0,π]上的图象.
查看答案
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比manfen5.com 满分网
(1)求an与bn
(2)证明:manfen5.com 满分网小于manfen5.com 满分网
查看答案
已知a>0,设函数manfen5.com 满分网的最大值为M,最小值为N,那么M+N=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.