满分5 > 高中数学试题 >

如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度. (1)求∠APB...

如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.
manfen5.com 满分网
(1)方法1,根据四边形的内角和为360°,根据切线的性质可知:∠OAP=∠OBP=90°,在求出∠AOB的度数,可将∠APB的度数求出; 方法2,证明△ABP为等边三角形,从而可将∠APB的度数求出; (2)方法1,作辅助线,连接OP,在Rt△OAP中,利用三角函数,可将AP的长求出; 方法2,作辅助线,过点O作OD⊥AB于点D,在Rt△OAD中,将AD的长求出,从而将AB的长求出,也即AP的长. 【解析】 (1)方法一: ∵在△ABO中,OA=OB,∠OAB=30°, ∴∠AOB=180°-2×30°=120°, ∵PA、PB是⊙O的切线, ∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°, ∴在四边形OAPB中, ∠APB=360°-120°-90°-90°=60°. 方法二: ∵PA、PB是⊙O的切线∴PA=PB,OA⊥PA; ∵∠OAB=30°,OA⊥PA, ∴∠BAP=90°-30°=60°, ∴△ABP是等边三角形, ∴∠APB=60°. (2)方法一:如图①,连接OP; ∵PA、PB是⊙O的切线, ∴PO平分∠APB,即∠APO=∠APB=30°, 又∵在Rt△OAP中,OA=3,∠APO=30°, ∴AP==3 . 方法二:如图②,作OD⊥AB交AB于点D; ∵在△OAB中,OA=OB, ∴AD=AB; ∵在Rt△AOD中,OA=3,∠OAD=30°, ∴AD=OA•cos30°=, ∴AP=AB=.
复制答案
考点分析:
相关试题推荐
已知动点P(x,y)在椭圆manfen5.com 满分网上,若F(3,0),|PF|=2,且M为PF中点,则|OM|=    查看答案
已知数列{an}中,manfen5.com 满分网*则数列{an}的通项公式是     查看答案
已知当x∈(-manfen5.com 满分网,π)时,不等式cos2x-2asinx+6a-1>0恒成立,求实数a的取值范围( )
A.manfen5.com 满分网
B.[-1,0]
C.manfen5.com 满分网
D.(manfen5.com 满分网,+∞)
查看答案
某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号、2号、…、19号、20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组.那么确保5号与14号入选并被分配到同一组的选取种数是( )
A.16
B.21
C.24
D.90
查看答案
在正三棱柱ABC-A1B1C1中,已知AB=1,点D在棱BB1上,且BD=1,则AD与平面AA1CC1所成角的正切值为( )
A.manfen5.com 满分网
B.1
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.