满分5 > 高中数学试题 >

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n...

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求证:数列{an+1-pan}为等比数列;
(2)数列{an}中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设A={(n,bn)|bn=3n+kn,n∈N*},其中k为常数,且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.
(1)根据an=pn+λqn可得an+1-pan的表达式,整理可得为常数,进而可判断数列{an+1-pan}为等比数列. (2)取数列{an}的连续三项an,an+1,an+2把an=pn+λqn代入an+12-anan+2整理可知结果不为0,进而可判断an+12≠anan+2,即数列{an}中不存在连续三项构成等比数列; (3)由3n+2n=5n整理得,设则可知f(x)为减函数,故可判定f(x)=1的解只有一个,从而当且仅当n=1,3n+2n=5n成立,同样的道理可证当k=1,k=3或k≥5时,B∩C=∅;当k=2时,B∩C={(1,5)},当k=4时,B∩C={(2,25)}. 【解析】 (1)∵an=pn+λqn, ∴an+1-pan=pn+1+λqn+1-p(pn+λqn)=λqn(q-p), ∵λ≠0,q>0,p≠q ∴为常数 ∴数列{an+1-pan}为等比数列 (2)取数列{an}的连续三项an,an+1,an+2(n≥1,n∈N*), ∵an+12-anan+2=(pn+1+λqn+1)2-(pn+λqn)(pn+2+λqn+2)=-λpnqn(p-q)2, ∵p>0,q>0,p≠q,λ≠0, ∴-λpnqn(p-q)2≠0,即an+12≠anan+2, ∴数列{an}中不存在连续三项构成等比数列; (3)当k=1时,3n+kn=3n+1<5n,此时B∩C=∅; 当k=3时,3n+kn=3n+3n=2•3n为偶数;而5n为奇数,此时B∩C=∅; 当k≥5时,3n+kn>5n,此时B∩C=∅; 当k=2时,3n+2n=5n,发现n=1符合要求, 下面证明唯一性(即只有n=1符合要求). 由3n+2n=5n得, 设,则是R上的减函数, ∴f(x)=1的解只有一个 从而当且仅当n=1时, 即3n+2n=5n,此时B∩C={(1,5)}; 当k=4时,3n+4n=5n,发现n=2符合要求, 下面同理可证明唯一性(即只有n=2符合要求). 从而当且仅当n=2时, 即3n+4n=5n,此时B∩C={(2,25)}; 综上,当k=1,k=3或k≥5时,B∩C=∅; 当k=2时,B∩C={(1,5)}, 当k=4时,B∩C={(2,25)}.
复制答案
考点分析:
相关试题推荐
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为9m,3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?
查看答案
如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,manfen5.com 满分网,O、M分别为CE、AB的中点.
(I)求证:OD∥平面ABC;
(II)求直线CD和平面ODM所成角的正弦值;
(III)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,其中ω>0,且manfen5.com 满分网,又函数f(x)的图象任意两相邻对称轴间距为manfen5.com 满分网
(Ⅰ)求ω的值.
(Ⅱ)设α是第一象限角,且manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
如图,P是双曲线manfen5.com 满分网上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且manfen5.com 满分网.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得manfen5.com 满分网.类似地:P是椭圆manfen5.com 满分网上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且manfen5.com 满分网.则|OM|的取值范围是    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.