满分5 > 高中数学试题 >

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原...

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若manfen5.com 满分网,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
(Ⅰ)抛物线C2有公共焦点F(1,0),可知该抛物线的标准方程的形式和P的值,代入即可; (Ⅱ)设出直线l的方程为y=k(x-4),联立方程,消去x,得到关于y的一元二次方程,设A(x1,y1),B(x2,y2),利用韦达定理和△>0及,消去y1,y2,可求得斜率k的值; (Ⅲ)设P(m,n),则OP中点为,因为O、P两点关于直线y=k(x-4)对称,利用对称的性质(垂直求平方),可求得斜率k的值,联立直线与椭圆方程,消去y,得到关于x的一元二次方程,△≥0,解不等式即可椭圆C1的长轴长的最小值. 【解析】 (Ⅰ)∵抛物线C2的焦点F(1,0), ∴=1,即p=2 ∴抛物线C2的方程为:y2=4x, (Ⅱ)设直线AB的方程为:y=k(x-4),(k存在且k≠0). 联立,消去x,得ky2-4y-16k=0, 显然△=16+64k2>0,设A(x1,y1),B(x2,y2), 则    ①y1•y2=-16          ② 又,所以         ③ 由①②③消去y1,y2,得k2=2, 故直线l的方程为,或. (Ⅲ)设P(m,n),则OP中点为,因为O、P两点关于直线y=k(x-4)对称, 所以,即,解之得, 将其代入抛物线方程,得:,所以,k2=1. 联立,消去y,得:(b2+a2k2)x2-8k2a2x+16a2k2-a2b2=0. 由△=(-8k2a2)2-4(b2+a2k2)(16a2k2-a2b2)≥0, 得16a2k4-(b2+a2k2)(16k2-b2)≥0, 即a2k2+b2≥16k2, 将k2=1,b2=a2-1代入上式并化简,得2a2≥17,所以,即, 因此,椭圆C1长轴长的最小值为.
复制答案
考点分析:
相关试题推荐
椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=manfen5.com 满分网
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.
查看答案
已知数列{an}中a1=2,点(an,an+1) 在函数f(x)=x2+2x的图象上,n∈N*.数列{bn}的前n项和为Sn,且满足
b1=1,当n≥2时,Sn2=bn(Sn-manfen5.com 满分网
(1)证明数列{lg(1+an)}是等比数列;
(2)求Sn
(3)设Tn=(1+a1)(1+a2)…(1+an)cn=manfen5.com 满分网,求Tn•(c1+c2+c3+…+cn)的值.
查看答案
已知函数f(x)=x3-3ax(a∈R),g(x)=lnx.
(Ⅰ)当a=1时,求f(x)在区间[-2,2]上的最小值;
(Ⅱ)若在区间[1,2]上f(x)的图象恒在g(x)图象的上方,求a的取值范围;
(Ⅲ)设h(x)=|f(x)|,x∈[-1,1],求h(x)的最大值F(a)的解析式.
查看答案
设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f''(x),若在(a,b)上,f''(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知manfen5.com 满分网
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=   
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为    查看答案
定义:若存在常数k,使得对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|≤k|x1-x2|成立,则称函数f(x)在定义域D上满足利普希茨条件.若函数manfen5.com 满分网满足利普希茨条件,则常数k的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.