满分5 >
高中数学试题 >
设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题: ①...
设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③若l∥α,l⊥β,则α⊥β;④m⊂α,n⊂α,且l⊥m,l⊥n,则l⊥α;
其中真命题的序号是( )
A.①③④
B.①②③
C.①③
D.②④
考点分析:
相关试题推荐
设
,
,
,则( )
A.a<b<c
B.c<b<a
C.c<a<b
D.b<a<c
查看答案
用二分法求f(x)=0的近似解(精确到0.1),利用计算器得f(2)<0,f(3)>0,f(2.5)<0,f(2.75)>0,f(2.625)>0,f(2.5625)>0,则近似解所在区间是( )
A.(2.5,2.75)
B.(2.5625,2.625)
C.(2.625,2.75)
D.(2.5,2.5625)
查看答案
已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案
已知椭圆C
1和抛物线C
2有公共焦点F(1,0),C
1的中心和C
2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C
2分别相交于A,B两点.
(Ⅰ)写出抛物线C
2的标准方程;
(Ⅱ)若
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C
2上,直线l与椭圆C
1有公共点,求椭圆C
1的长轴长的最小值.
查看答案
椭圆C:
+
=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F
1,F
2,点P是其上的动点,
(1)当△PF
1F
2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.
查看答案