满分5 > 高中数学试题 >

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点. (1)...

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

manfen5.com 满分网
(1)先证BD⊥面ACE,从而证得:B1D1⊥AE; (2)作BB1的中点F,连接AF、CF、EF.由E、F是CC1、BB1的中点,易得AF∥ED,CF∥B1E,从而平面ACF∥面B1DE.证得AC∥平面B1DE; (3)易知底为面ABD,高为EC,由体积公式求得三棱锥A-BDE的体积. 【解析】 (1)证明:连接BD,则BD∥B1D1,(1分) ∵ABCD是正方形,∴AC⊥BD.∵CE⊥面ABCD,∴CE⊥BD. 又AC∩CE=C,∴BD⊥面ACE.(4分) ∵AE⊂面ACE,∴BD⊥AE, ∴B1D1⊥AE.(5分) (2)证明:作BB1的中点F,连接AF、CF、EF. ∵E、F是CC1、BB1的中点,∴CEB1F, ∴四边形B1FCE是平行四边形, ∴CF∥B1E.(7分) ∵E,F是CC1、BB1的中点,∴, 又,∴. ∴四边形ADEF是平行四边形,∴AF∥ED, ∵AF∩CF=F,B1E∩ED=E, ∴平面ACF∥面B1DE.(9分) 又AC⊂平面ACF,∴AC∥面B1DE.(10分) (3)(文). (11分) .(14分) (理)∵AC∥ 面B1DE ∴ A 到面B1DE 的距离=C到面B1DE 的距离(11分) ∴ (14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次测试数学成绩的平均分;
(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都在94分以上,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任取2个数,求这两个数恰好是在[90,100]段的两个学生的数学成绩的概率.
查看答案
设△ABC的内角A、B、C的对边分别是a、b、c,且a=3,b=5,c=manfen5.com 满分网
(Ⅰ)求cosC的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
选做题(考生只能从中选做一题)
(1)(坐标系与参数方程选做题)曲线manfen5.com 满分网(θ为参数)上的点到两坐标轴的距离之和的最大值是   
(2)(几何证明选讲选做题)如右图,⊙O′和⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=   
manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(1,-3),manfen5.com 满分网=(4,2),若manfen5.com 满分网⊥(manfen5.com 满分网manfen5.com 满分网),其中λ∈R,则λ=    查看答案
如果直线l 过定点M(1,2)且与抛物线y=2x2有且仅有一个公共点,那么直线l的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.