满分5 > 高中数学试题 >

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、...

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求证:BF∥平面AD1E;
(2)求证:D1E⊥平面AEC.

manfen5.com 满分网
(1)取DD1的中点G,连接GB,GF.根据已知中E、F分别是棱B1B、DA的中点,我们易证明四边形BED1G为平行四边形,则BG∥D1E,根据线面平行的判定定理可得BG∥平面AD1E,进而根据面面平行的判定定理得到平面BGF∥平面AD1E,最后由面面平行的性质得到BF∥平面AD1E; (2)由已知中AA1=2,底面是边长为1的正方形,根据勾股定理,我们可以求出D1E⊥AE,D1E⊥CE,结合线面垂直的判定定理即可得到D1E⊥平面AEC. 证明:(1)取DD1的中点G,连接GB,GF.∵E、F分别是棱BB1、DA的中点, ∴GF∥AD1,BE∥D1G且BE=D1G,∴四边形BED1G为平行四边形,∴BG∥D1E. 又D1E、D1A⊂平面AD1E,BG、GF⊄平面AD1E,∴BG∥平面AD1E,GF∥平面AD1E. ∵BG、GF⊂平面BGF,且BG∩GF=G,∴平面BGF∥平面AD1E. ∵BF⊂平面BGF,∴BF∥平面AD1E. (2)∵AA1=2,A1D1=1,∴. 同理可得:.∵,∴D1E⊥AE. 同理可证得D1E⊥CE. 又AE∩CE=E,AE⊂平面AEC,CE⊂平面AEC,∴D1E⊥平面AEC.
复制答案
考点分析:
相关试题推荐
班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.
(I)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;
(Ⅱ)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.
查看答案
已知角α∈(0,π),向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求角α的大小;(Ⅱ)求函数f(x+α)的单调递减区间.
查看答案
已知点F、A分别为双曲线C:manfen5.com 满分网(a>0,b>0)的左焦点、右顶点,点B(0,-b)满足manfen5.com 满分网,则双曲线的离心率为    查看答案
在程序框图中,输入n=2010,按程序运行后输出的结果是   
manfen5.com 满分网 查看答案
为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图,则这些学生的平均分为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.