选修4-1:平面几何
如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE≌△ACD;
(2)若AB=6,BC=4,求AE.
考点分析:
相关试题推荐
已知函数
.
(1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(2)设m,n∈R,且m≠n,求证
.
查看答案
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线
上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
查看答案
如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB;
(3)若
,求平面PBE与平面ABCD所成的二面角的大小.
查看答案
为了解我区中学生的体质状况及城乡大学生的体质差异,对银川地区部分大学的学生进行了身高、体重和肺活量的抽样调查.现随机抽取100名学生,测得其身高情况如下表所示.
(1)请在频率分布表中的①、②、③位置填上相应的数据,并补全频率分布直方图,再根据频率分布直方图估计众数的值;
(2)若按身高分层抽样,抽取20人参加2011年庆元旦“步步高杯”全民健身运动其中有3名学生参加越野比赛,记这3名学生中“身高低于170Ccm”的人数为ξ,求ξ的分布列及期望.
查看答案
已知
,
(Ⅰ)求tanx的值;
(Ⅱ)求
的值.
查看答案