登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知函数f(x)=x3+ax2+x+1,a∈R. (Ⅰ)求函数f(x)的单调区间...
已知函数f(x)=x
3
+ax
2
+x+1,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设函数f(x)在区间
内是减函数,求a的取值范围.
(I)由于是高次函数,所以用导数法,先求导,令f′(x)=0分二种情况讨论:当判别式△≤0时为增函数,.当△>0时,由两个不同的根,则为单调区间的分水岭. (II)先由函数求导,再由“函数f(x)在区间内是减函数”转化为“f'(x)=3x2+2ax+1≤0在恒成立”,进一步转化为最值问题:在恒成立,求得函数的最值即可. 【解析】 (1)f(x)=x3+ax2+x+1求导:f'(x)=3x2+2ax+1 当a2≤3时,△≤0,f'(x)≥0,f(x)在R上递增 当a2>3,f'(x)=0求得两根为 即f(x)在递增,递减,递增 (2)f'(x)=3x2+2ax+1≤0在恒成立. 即在恒成立. 可知在上为减函数,在上为增函数.. 所以a≥2.a的取值范围是[2,+∞).
复制答案
考点分析:
相关试题推荐
某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持
米的距离,其中a为常数且
,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒).
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.
查看答案
如图,正方形ACDE边长为1且所在的平面与平面ABC垂直,AC⊥BC,且AC=BC.
(1)求点A到面EBC的距离;
(2)求直线AB与平面EBC所成角的大小;
(3)求二面角A-E-BC的大小.
查看答案
已知向量a=(sin(
+x),
cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=
,求角A的值.
查看答案
已知定义在R上的函数y=f(x)满足条件f(x+
)=-f(x),且函数y=f(x-
)是奇函数,给出以下四个命题:
①函数f(x)是周期函数;
②函数f(x)的图象关于点(-
,0)对称;
③函数f(x)是偶函数;
④函数f(x)在R上是单调函数.
在上述四个命题中,正确命题的序号是
(写出所有正确命题的序号)
查看答案
设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.