已知复数z的实部为1,虚部为-2,则
=
.
考点分析:
相关试题推荐
已知全集U=R,集合A={x|-1≤x≤3},集合B={x|log
2(x-2)<1},则A∩∁
UB=
.
查看答案
椭圆的中心是原点O,它的短轴长为
,相应于焦点F(c,0)(c>0)的准线l与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若
,求直线PQ的方程;
(3)设
(λ>1),过点P且平行于准线l的直线与椭圆相交于另一点M,证明
.
查看答案
设曲线y=e
-x(x≥0)在点M(t,c
-1c)处的切线l与x轴y轴所围成的三角表面积为S(t).
(Ⅰ)求切线l的方程;
(Ⅱ)求S(t)的最大值.
查看答案
对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数.在实数轴(箭头向右)上[x]是在点x左侧的第一个整数点,当x是整数时[x]就是x.这个函数[x]叫做“取整函数”也叫高斯(Gauss)函数.
从[x]的定义可得下列性质:x-1<[x]≤x<[x+1].
与[x]有关的另一个函数是{x},它的定义是{x}=x-[x],{x}称为x的“小数部分”.
(1)根据上文,求{x}的取值范围和[-5,2]的值;
(2)求[log
21]+[log
22]+[log
23]+[log
24]+…+[log
21024]的和.
查看答案
如图,将一副三角板拼接,使它们有公共边BC,若使两个三角形所在的平面互相垂直,且∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
(Ⅰ)求证:平面ABD⊥平面ACD;
(Ⅱ)求二面角A-CD-B的平面角的正切值;
(Ⅲ)求点B到平面ACD的距离.
查看答案