满分5 > 高中数学试题 >

四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,...

四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,manfen5.com 满分网,AB=AC.
(Ⅰ)证明:AD⊥CE;
(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C-AD-E的大小.

manfen5.com 满分网
(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的. (2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小. 【解析】 (1)取BC中点F,连接DF交CE于点O, ∵AB=AC,∴AF⊥BC, 又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE. ,∴∠OED+∠ODE=90°, ∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD. (2)在面ACD内过C点作AD的垂线,垂足为G. ∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD, 则∠CGE即为所求二面角的平面角., ,,, 则, ∴, 即二面角C-AD-E的大小.
复制答案
考点分析:
相关试题推荐
设△ABC的内角A,B,C所对的边分别为a、b、c,且bcosC=a-manfen5.com 满分网
(1)求角B的大小;
(2)若b=1,求△ABC的周长l的取值范围.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”之和为4的点的集合是面积为6的六边形;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题是    .(写出所有正确命题的序号) 查看答案
已知数列{an}是等差数列,其前n项和为Sn,若a1a2a3=15,且manfen5.com 满分网,则a2=    查看答案
已知平面向量manfen5.com 满分网满足|manfen5.com 满分网|=1,且manfen5.com 满分网与 manfen5.com 满分网的夹角为120°,则|manfen5.com 满分网|的取值范围是    _. 查看答案
一避暑山庄占地的平面图如图所示,它由三个正方形和四个三角形构成,其中三个正方形的面积分别为18亩、20亩和26亩,则整个避暑山庄占地    亩.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.