满分5 > 高中数学试题 >

已知函数f(x)=xlnx. (Ⅰ)求f(x)的最小值; (Ⅱ)若对所有x≥1都...

已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值. (2)将f(x)≥ax-1在[1,+∞)上恒成立转化为不等式对于x∈[1,+∞)恒成立,然后令,对函数g(x)进行求导,根据导函数的正负可判断其单调性进而求出最小值,使得a小于等于这个最小值即可. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx. 令f'(x)>0,解得;令f'(x)<0,解得. 从而f(x)在单调递减,在单调递增. 所以,当时,f(x)取得最小值. (Ⅱ)依题意,得f(x)≥ax-1在[1,+∞)上恒成立, 即不等式对于x∈[1,+∞)恒成立. 令, 则. 当x>1时, 因为, 故g(x)是(1,+∞)上的增函数, 所以g(x)的最小值是g(1)=1, 从而a的取值范围是(-∞,1].
复制答案
考点分析:
相关试题推荐
一动圆与已知⊙O1manfen5.com 满分网相外切,与⊙O2manfen5.com 满分网相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若轨迹C与直线y=kx+m (k≠0)相交于不同的两点M、N,当点A(0,-1)满足|manfen5.com 满分网|=|manfen5.com 满分网|时,求m的取值范围.
查看答案
某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料
日期3月1日3月2日3月3日3月4日3月5日
温差x(°C)101113128
发芽数y(颗)2325302616
(I)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.
(II)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程manfen5.com 满分网=manfen5.com 满分网x+manfen5.com 满分网
(III)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(II)所得的线性回归方程是否可靠?
查看答案
如图,在铁路建设中需要确定隧道的长度和隧道两端的施工方向.已测得隧道两端的两点A、B到某一点C的距离a,b及∠ACB=α,求A、B两点间的距离,以及∠ABC、∠BAC.

manfen5.com 满分网 查看答案
如图已知平面α、β,且α∩β=AB,PC⊥α,PD⊥β,C,D是垂足,试判断直线AB与CD的位置关系?并证明你的结论.

manfen5.com 满分网 查看答案
平面上有n(n≥2)个圆,其中每两个圆都相交于两点,任何三个圆无公共点.这n个圆将平面分成f(n)块区域,可数得f(2)=4,f(3)=8,f(4)=14,则f(n)的表达式为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.