满分5 > 高中数学试题 >

已知函数把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式...

已知函数manfen5.com 满分网把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式为( )
A.manfen5.com 满分网(n∈N*
B.an=n(n-1)(n∈N*
C.an=n-1(n∈N*
D.an=2n-2(n∈N*
函数y=f(x)与y=x在(0,1],(1,2],(2,3],(3,4],…(n,n+1]上的交点依次为(0,0),(1,1),(2,2),(3,3),(4,4),…(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…n+1.方程f(x)-x=0的根按从小到大的顺序排列所得数列为0,1,2,3,4,…其通项公式为an=n-1. 【解析】 若0<x≤1,则-1<x-1<0,得f(x)=f(x-1)+1=2x-1, 若1<x≤2,则0<x-1≤1,得f(x)=f(x-1)+1=2x-2+1 若2<x≤3,则1<x-1≤2,得f(x)=f(x-1)+1=2x-3+2 若3<x≤4,则2<x-1<3,得f(x)=f(x-1)+1=2x-4+3 以此类推,若n<x≤n+1(其中n∈N),则f(x)=f(x-1)+1=2x-n-1+n, 下面分析函数f(x)=2x的图象与直线y=x+1的交点 很显然,它们有两个交点(0,1)和(1,2), 由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点. 然后①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位即得到函数f(x)=2x-1和y=x的图象, 取x≤0的部分,可见它们有且仅有一个交点(0,0). 即当x≤0时,方程f(x)-x=0有且仅有一个根x=0. ②取①中函数f(x)=2x-1和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位, 即得f(x)=2x-1和y=x在0<x≤1上的图象,显然,此时它们仍然只有一个交点(1,1). 即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1. ③取②中函数f(x)=2x-1和y=x在0<x≤1上的图象,继续按照上述步骤进行, 即得到f(x)=2x-2+1和y=x在1<x≤2上的图象,显然,此时它们仍然只有一个交点(2,2). 即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2. ④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1). 即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…n+1. 综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为 0,1,2,3,4,… 其通项公式为an=n-1; 故选C.
复制答案
考点分析:
相关试题推荐
设曲线y=xn+1(n∈N*),在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2011x1+log2011x2+…+log2011x2010的值为( )
A.-log20112010
B.-1
C.log20112010-1
D.1
查看答案
已知点F、A分别为双曲manfen5.com 满分网的左焦点、右顶点,点B(0,b)满足manfen5.com 满分网,则双曲线的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
记事件A发生的概率为P(A),定义f(A)=lg[P(A)+manfen5.com 满分网]为事件A 发生的“测度”.现随机抛掷一个骰子,则下列事件中测度最大的一个是( )
A.向上的点数为1
B.向上的点数不大于2
C.向上的点数为奇数
D.向上的点数不小于3
查看答案
已知两个不同的平面α,β和两条不重合的直线m,n,下列四个命题:
①若m∥n,m⊥α,则n⊥α;
②若m⊥α,m⊥β,则α∥β;
③若m⊥α,m∥n,n⊂β,则α⊥β;
④若m∥α,α∩β=n,则m∥n.
其中正确命题的个数是( )
A.0个
B.1个
C.2个
D.3个
查看答案
下列函数中,最小正周期为π,且图象关于直线manfen5.com 满分网对称的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.