满分5 > 高中数学试题 >

已知直线x-2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是...

已知直线x-2y+2=0经过椭圆manfen5.com 满分网的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线manfen5.com 满分网分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为manfen5.com 满分网?若存在,确定点T的个数,若不存在,说明理由.

manfen5.com 满分网
(1)因为直线过椭圆的左顶点与上顶点,故可解出直线与坐标轴的交点,即知椭圆的长半轴长与短半轴长,依定义写出椭圆的方程即可. (2)法一、引入直线AS的斜率k,用点斜式写出直线AS的方程,与l的方程联立求出点M的坐标,以及点S的坐标,又点B的坐标已知,故可解 出直线SB的方程,亦用参数k表示的方程,使其与直线l联立,求出点N的坐标,故线段MN的长度可以表示成直线AS的斜率k的函数,根据其形式选择单调性法或者基本不等式法求最值,本题适合用基本不等式求最值. 法二、根据图形构造出了可用基本不等式的形式来求最值. (3)在上一问的基础上求出参数k,则直线SB的方程已知,可求出线段AB的长度,若使面积为,只须点T到直线BS的距离为即可,由此问题转化为研究与直线SB平行且距离为的直线与椭圆的交点个数问题,下易证 【解析】 (1)由已知得,椭圆C的左顶点为A(-2,0), 上顶点为D(0,1),∴a=2,b=1 故椭圆C的方程为(4分) (2)依题意,直线AS的斜率k存在,且k>0,故可设直线AS的方程为y=k(x+2),从而,由得(1+4k2)x2+16k2x+16k2-4=0 设S(x1,y1),则得,从而 即,(6分) 又B(2,0)由得, ∴,(8分) 故 又k>0,∴当且仅当,即时等号成立. ∴时,线段MN的长度取最小值(10分) (2)另【解析】 设S(xs,yS),依题意,A,S,M三点共线,且所在直线斜率存在, 由kAM=kAS,可得同理可得:又 所以,=不仿设yM>0,yN<0当且仅当yM=-yN时取等号, 即时,线段MN的长度取最小值. (3)由(2)可知,当MN取最小值时, 此时BS的方程为,∴(11分) 要使椭圆C上存在点T,使得△TSB的面积等于,只须T到直线BS的距离等于, 所以T在平行于BS且与BS距离等于的直线l'上. 设直线l':x+y+t=0,则由,解得或. 又因为T为直线l'与椭圆C的交点,所以经检验得,此时点T有两个满足条件.(14分)
复制答案
考点分析:
相关试题推荐
函数f(x)=ax3+bx2+(c-3a-2b)x+d的图象如图所示.
(1)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式
(2)在(1)的条件下,是否存在实数m,使得y=f(x)的图象与manfen5.com 满分网的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点
F是PB的中点,点E在边BC上移动,
(Ⅰ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,二面角P-DE-A的大小为45°?

manfen5.com 满分网 查看答案
在数列{an}中,已知an≥1,a1=1,且manfen5.com 满分网
(1)记manfen5.com 满分网,证明:数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设cn=(2an-1)2,求manfen5.com 满分网的值.
查看答案
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为x,y,O为坐标原点,P(x-2,x-y),记ξ=|OP|2
(1)求随机变量ξ的最大值,并求事件“ξ取最大值”的概率;
(2)求ξ的分布列及数学期望.
查看答案
已知函数manfen5.com 满分网,且函数f(x)的最小正周期为π
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若manfen5.com 满分网,且a+c=4,求边长b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.