满分5 > 高中数学试题 >

扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考...

manfen5.com 满分网扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为manfen5.com 满分网平方米,且高度不低于manfen5.com 满分网米.记防洪堤横断面的腰长为x(米),外周长(梯形的上底线段BC与两腰长的和)为y(米).
(1)求y关于x的函数关系式,并指出其定义域;
(2)要使防洪堤横断面的外周长不超过10.5米,则其腰长x应在什么范围内?
(3)当防洪堤的腰长x为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
(1)先由横断面积用x表示BC,从建立y关于x的函数关系式,定义域由线段必须大于零和高度不低于米求解; (2)解y≤10.5分式不等式; (3)求函数y的最小值,根据函数特点及条件可选用不等式解决. 【解析】 (1),其中,, ∴,得, 由,得2≤x<6 ∴;(6分) (2)得3≤x≤4∵[3,4]⊂[2,6) ∴腰长x的范围是[3,4](10分) (3), 当并且仅当,即时等号成立. ∴外周长的最小值为米,此时腰长为米.(15分)
复制答案
考点分析:
相关试题推荐
椭圆manfen5.com 满分网的右焦点为F,过原点和x轴不重合的直线与椭圆E交于A,B,两点,|AF|+|BF|=4,manfen5.com 满分网的最小值为0.5.
(I)求椭圆E的方程;
(II)若直线l:y=kx+m与椭圆E交于M,N两点(其中5m+6k≠0),以线段MN为直径的圆过E的右顶点,求证:直线l过定点.
查看答案
manfen5.com 满分网如图1,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF⊥平面ABCD,连接部分线段后围成一个空间几何体,如图2.
(Ⅰ)求证:BE∥平面ADF;
(Ⅱ)求三棱锥F-BCE的体积.
查看答案
雅山中学采取分层抽样的方法从应届高三学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.
文科25
理科103
(Ⅰ)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用假设检验的方法分析有多大的把握认为雅山中学的高三学生选报文理科与性别有关?
参考公式和数据:manfen5.com 满分网

p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.072.713.845.026.647.8810.83

查看答案
已知数列{an}是首项为2,公比为manfen5.com 满分网的等比数列,Sn为{an}的前n项和.
(1)求数列{an}的通项an及Sn
(2)设数列{bn+an}是首项为-2,第三项为2的等差数列,求数列{bn}的通项公式及其前n项和Tn
查看答案
已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如下表:
xmanfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
y1manfen5.com 满分网-1
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在△ABC中,AC=2,BC=3,manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.