满分5 > 高中数学试题 >

已知函数. (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+...

已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a-1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围.
(Ⅰ) 求出函数的定义域,在定义域内,求出导数大于0的区间,即为函数的增区间, 求出导数小于0的区间即为函数的减区间. (Ⅱ) 根据函数的单调区间求出函数的最小值,要使f(x)>2(a-1)恒成立,需使函数的最小值大于2(a-1), 从而求得a的取值范围. (Ⅲ)利用导数的符号求出单调区间,再根据函数g(x)在区间[e-1,e]上有两个零点,得到,  解出实数b的取值范围. 【解析】 (Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞), 因为,所以,,所以,a=1. 所以,,. 由f'(x)>0解得x>2;由f'(x)<0,解得 0<x<2. 所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2). (Ⅱ)  ,由f'(x)>0解得 ; 由f'(x)<0解得 . 所以,f(x)在区间上单调递增,在区间上单调递减. 所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a-1)成立, 所以,即可. 则. 由解得 . 所以,a的取值范围是  . (Ⅲ) 依题得 ,则 . 由g'(x)>0解得  x>1;   由g'(x)<0解得  0<x<1. 所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数. 又因为函数g(x)在区间[e-1,e]上有两个零点,所以, 解得 .   所以,b的取值范围是.
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=90°,PA=PD=AD=2BC=2,CD=manfen5.com 满分网,M在棱PC上,N是AD的中点,二面角M-BN-C为30°.
(1)求manfen5.com 满分网的值;
(2)求直线PB与平面BMN所成角的大小.

manfen5.com 满分网 查看答案
某公司有电子产品n件,合格率为96%,在投放市场之前,决定对该产品进行最后检验,为了减少检验次数,科技人员采用打包的形式进行,即把x件打成一包,对这x件产品进行一次性整体检验,如果检测仪器显示绿灯,说明该包产品均为合格品;如果检测仪器显示红灯,说明该包产品至少有一件不合格,须对该包产品一共检测了x+1次
(1)探求检测这n件产品的检测次数f(x);
(2)如果设0.96n≈1-0.04n,要使检测次数最少,则每包应放多少件产品?
查看答案
已知向量m=(manfen5.com 满分网manfen5.com 满分网),n=(manfen5.com 满分网manfen5.com 满分网),记f(x)=m•n;
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
查看答案
给出定义:若m-manfen5.com 满分网<x≤m+manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的四个命题:
①y=f(x)的定义域是R,值域是(manfen5.com 满分网manfen5.com 满分网];
②点(k,0)(k∈Z)是y=f(x)的图象的对称中心;
③函数y=f(x)的最小正周期为1;
④函数y=f(x)在(manfen5.com 满分网manfen5.com 满分网]上是增函数;
则其中真命题是    查看答案
P是△ABC所在平面内一点,且满足manfen5.com 满分网,已知△ABC的面积是1,则△PAB的面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.