满分5 > 高中数学试题 >

如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C...

如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

manfen5.com 满分网
(1)由题意可知:平面AA1C1C⊥平面ABC,根据平面与平面垂直的性质定理可以得到,只要证明A1O⊥AC就行了. (2)此小题由于直线A1C与平面A1AB所成角不易作出,再由第(1)问的结论可以联想到借助于空间直角坐标系,设定参数,转化成法向量n与所成的角去解决 (3)有了第(2)问的空间直角坐标系的建立,此题解决就方便多了,欲证OE∥平面A1AB,可以转化成证明OE与法向量n垂直 【解析】 (Ⅰ)证明:因为A1A=A1C,且O为AC的中点, 所以A1O⊥AC.(1分) 又由题意可知,平面AA1C1C⊥平面ABC, 交线为AC,且A1O⊂平面AA1C1C, 所以A1O⊥平面ABC.(4分) (Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系. 由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴, 所以得: 则有:.(6分) 设平面AA1B的一个法向量为n=(x,y,z),则有, 令y=1,得所以.(7分) .(9分) 因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(10分) (Ⅲ)设,(11分) 即,得 所以,得,(12分) 令OE∥平面A1AB,得,(13分) 即-1+λ+2λ-λ=0,得, 即存在这样的点E,E为BC1的中点.(14分)
复制答案
考点分析:
相关试题推荐
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
manfen5.com 满分网
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.
查看答案
某少数民族刺绣有着悠久历史,下图中的(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成的,小正方形越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(5)=    ,f(n)=   
manfen5.com 满分网 查看答案
某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积是    
manfen5.com 满分网 查看答案
小F同学热爱数学,一天,他动手做实验:《用随机模拟的方法估计圆周率的值》,在左下图的正方形中随机撒豆子,每个豆子落在正方形内任何一点是等可能的,他随机地撒50粒,100粒,200粒…分别记录落在圆内的豆子数.若他在撒50粒的实验中统计得到落在圆内的豆子数为35粒,则由此估计出的圆周率π的值为     .(精确到0.01)
manfen5.com 满分网 查看答案
P是△ABC所在平面上的一点,且满足manfen5.com 满分网,若△ABC的面积为1,则△PAB的面积为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.