满分5 > 高中数学试题 >

(选修4-2:矩阵与变换) 已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α...

(选修4-2:矩阵与变换)
已知矩阵A=manfen5.com 满分网,若矩阵A属于特征值6的一个特征向量为α1=manfen5.com 满分网,属于特征值1的一个特征向量为α2=manfen5.com 满分网
①求矩阵A;②求直线y=x+2在矩阵A的作用下得到的曲线方程.
①根据特征值的定义可知Aα=λα,利用待定系数法建立四个等式关系,解二元一次方程组即可. ②设直线y=x+2上任意一点(x,y),(x',y')是所得的直线上一点,根据矩阵变换特点,写出两对坐标之间的关系,把已知的点的坐标用未知的坐标表示,代入已知直线的方程,得到结果. 【解析】 ①由矩阵A属于特征值6的一个特征向量为 可得   =6 , 即 ; 由矩阵A属于特征值1的一个特征向量为 ,可得   =, 即 解得 ,即矩阵 . ②设y=x+2上一点(x,y)在A作用下变为(x′,y′), 则 =, ∴, ∴,∴, ∵y=x+2,代入得 , 化简,得y′=x′+2, ∴变换后的直线方程是:y=x+2.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(a-1)ln(ex+a2-a-2)(a为常数)是实数集R上的增函数,对任意的x∈R,有f(x)+f(-x)=0,函数,函数g(x)=ln[f(x)+1].
(1)求实数a的值;
(2)若对任意的x>0,g(x)<px恒成立,求实数p的取值范围;
(3)求证:当n∈N*时,g(n)<1+manfen5.com 满分网
查看答案
已知抛物线C:y2=2px,(p>0),点manfen5.com 满分网到抛物线C的准线的距离等于2.
(1)求抛物线C的方程;
(2)过直线l:x=-1上任一点A向抛物线C引两条切线AS,AT(切点为S,T),求证:直线ST过定点,并求出该定点;
(3)当直线l变动时,是否也有相应的结论成立?请写出一个正确的命题来(无需证明).

manfen5.com 满分网 查看答案
已知数列an满足:2n•a1•a2•…•an=A2nn,n∈N*
(1)求数列an的通项公式;(2)若bn=an+2n+1,求数列manfen5.com 满分网的前n项和.
查看答案
如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

manfen5.com 满分网 查看答案
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
manfen5.com 满分网
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.