满分5 > 高中数学试题 >

如图,一圆形靶分成A,B,C三部分,其面积之比为1:1:2.某同学向该靶投掷3枚...

manfen5.com 满分网如图,一圆形靶分成A,B,C三部分,其面积之比为1:1:2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.
(Ⅰ)求该同学在一次投掷中投中A区域的概率;
(Ⅱ)设x表示该同学在3次投掷中投中A区域的次数,求x的分布列及数学期望;
(Ⅲ)若该同学投中A,B,C三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.
(1)题考查的知识点是几何概型的意义,关键是要找出满足条件A的区域面积和总面积之间的关系,再根据几何概型计算公式给出答案;(2)根据(1)中投中A区域的概率,不难列出x的分布列并进行数学期望;(3)考查的是古典概型,我们可以列举出三次投掷总的基本事件个数及恰得4分的事件个数,代入古典概型计算公式求解. 【解析】 (Ⅰ)设该同学在一次投掷中投中A区域的概率为P(A), 依题意,. (Ⅱ)依题意知,,(k=0,1,2,3) 从而X的分布列为: (Ⅲ)设Bi表示事件“第i次击中目标时,击中B区域”,Ci表示事件“第i次击中目标时,击中C区域”,i=1,2,3. 依题意知.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(sinA,sinB),manfen5.com 满分网=(cosB,cosA),manfen5.com 满分网=sin2C,其中A、B、C为△ABC的内角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且manfen5.com 满分网,求AB的长.
查看答案
在平面向量中有如下定理:设点O、P、Q、R为同一平面内的点,则P、Q、R三点共线的充要条件是:存在实数t,使manfen5.com 满分网.试利用该定理解答下列问题:
如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设manfen5.com 满分网,则x+2y=   
manfen5.com 满分网 查看答案
已知曲线y=x2-1在x=x点处的切线与曲线y=1-x3在x=x处的切线互相平行,则x的值为    查看答案
设a,b,c为正实数,且a+b+c=1,则ab2c的最大值为     查看答案
二项式manfen5.com 满分网的展开式中x3的系数是    (用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.