如图,已知直线L:x=my+1过椭圆C:
的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a
2上的射影依次为点D,K,E,
(1)已知抛物线
的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且
,当m变化时,求λ
1+λ
2的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.
考点分析:
相关试题推荐
已知函数f(x)=ln(x+a),g(x)=
x
3+b,直线l:y=x与y=f(x)相切,
(1)求a的值
(2)若方程f(x)=g(x)在(0,+∞)上有且仅有两个解x
1,x
2求b的取值范围,并比较x
1x
2+1与x
1+x
2的大小.(3)设n≥2时,n∈N
*,求证:
+…
<1
查看答案
某县为了贯彻落实党中央国务院关于农村医疗保险(简称“医保”)政策,制定了如下实施方案:2009年底通过农民个人投保和政府财政投入,共集资1000万元作为全县农村医保基金,从2010年起,每年报销农民的医保费都为上一年底医保基金余额的10%,并且每年底县财政再向医保基金注资m万元(m为正常数).
(Ⅰ)以2009年为第一年,求第n年底该县农村医保基金有多少万元?
(Ⅱ)根据该县农村人口数量和财政状况,县政府决定每年年底的医保基金要逐年增加,同时不超过1500万元,求每年新增医保基金m(单位:万元)应控制在什么范围内.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
,求二面角E-AF-C的余弦值.
查看答案
如图,一圆形靶分成A,B,C三部分,其面积之比为1:1:2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.
(Ⅰ)求该同学在一次投掷中投中A区域的概率;
(Ⅱ)设x表示该同学在3次投掷中投中A区域的次数,求x的分布列及数学期望;
(Ⅲ)若该同学投中A,B,C三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.
查看答案
已知向量
=(sinA,sinB),
=(cosB,cosA),
=sin2C,其中A、B、C为△ABC的内角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且
,求AB的长.
查看答案