满分5 > 高中数学试题 >

已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R. (Ⅰ)当...

已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)当manfen5.com 满分网时,讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;
(Ⅲ)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.
(1)将a的值代入后对函数f(x)进行求导,当导函数大于0时求原函数的单调增区间,当导函数小于0时求原函数的单调递减区间. (2)根据函数f(x)仅在x=0处有极值说明f'(x)=0仅有x=0一个根得到答案. (3)根据函数f(x)的单调性求出最大值,然后令最大值小于等于1恒成立求出b的范围. 【解析】 (Ⅰ)f'(x)=4x3+3ax2+4x=x(4x2+3ax+4). 当时,f'(x)=x(4x2-10x+4)=2x(2x-1)(x-2). 令f'(x)=0,解得x1=0,,x3=2. 当x变化时,f'(x),f(x)的变化情况如下表: 所以f(x)在,(2,+∞)内是增函数,在(-∞,0),内是减函数. (Ⅱ)f'(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根. 为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2-64≤0. 解些不等式,得.这时,f(0)=b是唯一极值. 因此满足条件的a的取值范围是. (Ⅲ)由条件a∈[-2,2],可知△=9a2-64<0,从而4x2+3ax+4>0恒成立. 当x<0时,f'(x)<0;当x>0时,f'(x)>0. 因此函数f(x)在[-1,1]上的最大值是f(1)与f(-1)两者中的较大者. 为使对任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立, 当且仅当,即,在a∈[-2,2]上恒成立. 所以b≤-4,因此满足条件的b的取值范围是(-∞,-4].
复制答案
考点分析:
相关试题推荐
已知⊙C1:x2+(y+5)2=5,点A(1,-3)
(Ⅰ)求过点A与⊙C1相切的直线l的方程;
(Ⅱ)设⊙C2为⊙C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为manfen5.com 满分网?荐存在,求出点P的坐标;若不存在,试说明理由.
查看答案
某自来水公司准备修建一条饮水渠,其横截面为如图所示的等腰梯形,∠ABC=120°,
按照设计要求,其横截面面积为manfen5.com 满分网平方米,为了使建造的水渠用料最省,横截面的周
长(梯形的底BC与两腰长的和)必须最小,设水渠深h米.
(Ⅰ)当h为多少米时,用料最省?
(Ⅱ)如果水渠的深度设计在manfen5.com 满分网的范围内,求横截面周长的最小值.

manfen5.com 满分网 查看答案
如图,在四棱锥O-ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.
求证:(Ⅰ)直线MC∥平面OAB;
(Ⅱ)直线BD⊥直线OA.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网=(sinx+2cosx,3cosx),manfen5.com 满分网=(sinx,cosx),且f(x)=manfen5.com 满分网manfen5.com 满分网
(1)求函数f(x)的最大值;
(2)求函数f(x)在[0,π]上的单调递增区间.
查看答案
在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),当数列{xn}周期为3时,则该数列的前2007项的和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.