满分5 > 高中数学试题 >

已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:有一个公共点...

manfen5.com 满分网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:manfen5.com 满分网有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求manfen5.com 满分网的取值范围.
(1)先利用点A在圆上求出m,再利用直线PF1与圆C相切求出直线PF1与的方程以及c,再利用点A在椭圆上求出2a,即可求出椭圆E的方程; (2)先把用点Q的坐标表示出来,再利用Q为椭圆E上的一个动点以及基本不等式即可求出的取值范围. 【解析】 (1)点A代入圆C方程,得(3-m)2+1=5. ∵m<3, ∴m=1. 设直线PF1的斜率为k, 则PF1:y=k(x-4)+4,即kx-y-4k+4=0. ∵直线PF1与圆C相切,圆C:(x-1)2+y2=5, ∴, 解得. 当k=时,直线PF1与x轴的交点横坐标为,不合题意,舍去. 当k=时,直线PF1与x轴的交点横坐标为-4, ∴c=4. ∴F1(-4,0),F2(4,0). 故2a=AF1+AF2=,,a2=18,b2=2. 椭圆E的方程为:. (2),设Q(x,y), ,. ∵,即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|, ∴-18≤6xy≤18. 则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36]. ∴x+3y的取值范围是[-6,6] ∴x+3y-6的范围只:[-12,0]. 即的取值范围是[-12,0].
复制答案
考点分析:
相关试题推荐
将n2个数排列成n行n列的一个数阵,已知a11=2,a13=a61+1,该数列第一列的n个数从上到下构成以m为公差的等差数列,每一行的n个数从左到右构成以m(其中m∈R+)为公比的等比数列,
(Ⅰ)求第i行第j列的数aij
(Ⅱ)求这n2个数的和.

manfen5.com 满分网 查看答案
汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对CO2排放量超过130g/km的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行CO2排放量检测,记录如下(单位:g/km).
80110120140150
100120xy160
经测算发现,乙品牌车CO2排放量的平均值为manfen5.com 满分网g/km.
(1)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合CO2排放量的概率是多少?
(2)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.
查看答案
manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF.
(2)设FC的中点为M,求证:OM∥平面DAF.
(3)求四棱锥F-ABCD的体积.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且2b•cosA=c•cosA+a•cosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=manfen5.com 满分网,b+c=4,求△ABC的面积.
查看答案
已知函数f(x)=x3-3x,x∈[-2,2]和函数g(x)=ax-1,x∈[-2,2],若对于∀x1∈[-2,2],总∃x∈[-2,2],使得g(x)=f(x1)成立,则实数a的取值范围    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.