直角三角形ABC中,∠C=90°,B、C在x轴上且关于原点O对称,D在边BC上,BD=3DC,△ABC的周长为12.若一双曲线E以B、C为焦点,且经过A、D两点.
(1)求双曲线E的方程;
(2)若一过点P(3,0)的直线l与双曲线E相交于不同于双曲线顶点的两点M、N,且
,问在x轴上是否存在定点G,使
?若存在,求出所有这样定点G的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知函数f(x)=x
3-ax
2-3x
(Ⅰ)若函数f(x)在
是增函数,导函数f′(x)在(-∞,1]上是减函数,求a的值;
(Ⅱ)令g(x)=f(x)-f′(x)+3x
2,求g(x)的单调区间.
查看答案
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC=
AD,E是线段AB的中点.
(Ⅰ)求证:PE⊥CD;
(Ⅱ)求四棱锥P-ABCD的体积;
(Ⅲ)求PC与平面PDE所成角的正弦值.
查看答案
某地区试行高考考试改革:在高三学年中举行4次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不再参加其余的测试,而每个学生最多也只能参加4次测试.假设某学生每次通过测试的概率都是
,每次测试时间间隔恰当,每次测试通过与否互相独立.
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)如果考上大学或参加完4次测试,那么测试就结束.记该生参加测试的次数为X,求X的分布列及X的数学期望.
查看答案
已知函数f(x)=2asinωxcosωx+b(2cos
2ωx-1)(ω>0)在
时取最大值2.x
1,x
2是集合M={x∈R|f(x)=0}中的任意两个元素,|x
1-x
2|的最小值为
.
(I)求a、b的值;
(II)若
,求
的值.
查看答案
给出定义:若m-
<x≤m+
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
];
②函数y=f(x)的图象关于直线x=
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-
,
]上是增函数.
其中正确的命题的序号
.
查看答案