满分5 > 高中数学试题 >

已知圆,定点,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足. (I)求...

已知圆manfen5.com 满分网,定点manfen5.com 满分网,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设manfen5.com 满分网,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
(I)点Q在NP上,点G在MP上,且满足故有|GN|+|GM|=|MP|=6,由椭圆的定义知G点的轨迹是以M、N为焦点的椭圆,由定义写出其标准方程即可得到点G的轨迹C的方程. (II),所以四边形OASB为平行四边形,若存在l使得||=||,则四边形OASB必为矩形即有,令A(x1,y1),B(x2,y2),则有x1x2+y1y2=0,由直线l与曲线C联立求利用根与系数的关系求出x1x2,y1y2的参数表达式,代入求直线的斜率k,若能求出,则说明存在,若不能求出,则不存在. 【解析】 (I)Q为PN的中点且GQ⊥PN⇒GQ为PN的中垂线⇒|PG|=|GN| ∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距, ∴短半轴长b=2,∴点G的轨迹方程是(5分) (II)因为,所以四边形OASB为平行四边形 若存在l使得||=||,则四边形OASB为矩形∴ 若l的斜率不存在,直线l的方程为x=2, 由得∴,与矛盾, 故l的斜率存在.(7分) 设l的方程为y=k(x-2),A(x1,y1),B(x2,y2) 由 ∴① y1y2=[k(x1-2)][k(x2-2)]=②(9分) 把①、②代入x1x2+y1y2=0得 ∴存在直线l:3x-2y-6=0或3x+2y-6=0使得四边形OASB的对角线相等.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且满足manfen5.com 满分网,(4n-1)an=3×4n-1Sn,n∈N*,设manfen5.com 满分网,Tn为数列{bn}的前n项和.
(I)求Sn
(II)求manfen5.com 满分网的值.
查看答案
“上海世博会”于2010年5月1日至10月31日在上海举行,世博会“中国馆•贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄,海纳百川的重要文化载体,为此,上海世博会事物协调局举办“中国2010年上海世博会”中国馆•贵宾厅艺术品方案征集活动,某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应证,假设代表中有中国画、书法、油画入选“中国馆•贵宾厅”的概率均为manfen5.com 满分网,陶艺入选“中国馆•贵宾厅”的概率为manfen5.com 满分网
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆•贵宾厅”的概率;
(2)设该地美术馆选送的四件代表作中入选“中国馆•贵宾厅”的作品件数为随机变量ξ,求ξ的数学期望.
查看答案
如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,AB=2,E为AB的中点,将△ADE沿DE翻折至△A′DE,使二面角A′-DE-B为直二面角.
(1)若F、G分别为A′D、EB的中点,求证:FG∥平面A′BC;
(2)求二面角D-A′B-C度数的余弦值

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(cosα,sinα),manfen5.com 满分网=(cosβ,sinβ),|manfen5.com 满分网-manfen5.com 满分网|=manfen5.com 满分网
(1)求cos(α-β)的值;
(2)若0<α<manfen5.com 满分网,-manfen5.com 满分网<β<0,且sinβ=-manfen5.com 满分网,求sinα的值.
查看答案
若函数f(x)在其定义域内某一区间[a,b]上连续,且对[a,b]中任意实数x1,x2,都有manfen5.com 满分网,则称函数f(x)在[a,b]上是下凸函数;有以下几个函数:
①f(x)=x2+ax+b,x∈R;
manfen5.com 满分网
③f(x)=sinx,x∈[0,2π);
manfen5.com 满分网
manfen5.com 满分网
其中是下凸函数的是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.