通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
.
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
考点分析:
相关试题推荐
已知△ABC的面积为3,且满足
,设
和
的夹角为θ.
(I)求θ的取值范围;
(II)求函数
的最大值与最小值.
查看答案
已知一几何体的三视图如图,主视图与左视图为全等的等腰直角三角形,直角边长为6,俯视图为正方形,(1)求点A到面SBC的距离;(2)有一个小正四棱柱内接于这个几何体,棱柱底面在面ABCD内,其余顶点在几何体的棱上,当棱柱的底面边长与高取何值时,棱柱的体积最大,并求出这个最大值.
查看答案
已知方程x
3+ax
2+bx+c=0的三个实根可分别作为一个椭圆、一双曲线、一抛物线的离心率.(1)求a+b+c的值;(2)求
的取值范围.
查看答案
设m,n是异面直线,则(1)一定存在平面α,使m⊂α且n∥α;(2)一定存在平面α,使m⊂α且n⊥α;(3)一定存在平面γ,使m,n到γ的距离相等;(4)一定存在无数对平面α和β,使m⊂α,n⊂β,且α⊥β;上述4个命题中正确命题的序号是
.
查看答案
已知函数
在(-∞,+∞)上单调递减,那么实数a的取值范围是
.
查看答案