满分5 > 高中数学试题 >

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2...

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为manfen5.com 满分网,右顶点为D(2,0),设点manfen5.com 满分网.(Ⅰ)求该椭圆的标准方程;(II)过原点O且斜率为k(k<0)的直线l交椭圆于点B,C,求△ABC面积的最大值及此时直线l的方程.
(Ⅰ)由左焦点为,右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x轴上求得方程. (II)设该直线方程为y=kx,代入椭圆方程,求得B,C的坐标,进而求得弦长|BC|,再求原点到直线的距离,从而可得三角形面积模型,再用基本不等式求其最值. 【解析】 (Ⅰ)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1. 又椭圆的焦点在x轴上, ∴椭圆的标准方程为  (II)设该直线方程为y=kx,代入 解得B( ),C( ), 则 ,又点A到直线BC的距离d=, ∴△ABC的面积S△ABC= 于是S△ABC= 由 ≥-1,得S△ABC≤,其中,当k=时,等号成立. ∴S△ABC的最大值是 .直线方程为y=x
复制答案
考点分析:
相关试题推荐
某车间甲组有10名工人,其中4名女工人;乙组有10名工人,其中有6名女工人,先采用分层抽样的方法(层内采用不放会简单随机抽样)从甲、乙两组中抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人至少有1名男工人的概率;(3)求抽取的4名工人中恰有2名女工人的概率. 查看答案
在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=90°,D是BC边的中点,E为AA1的中点,直线A1C与底面ABC所成的角为60°.
(Ⅰ)求证:A1C∥面AB1D;
(Ⅱ)求二面角A-BE-C的大小.
manfen5.com 满分网 查看答案
已知{an}是各项均为正数的等差数列,lga1、lga2、lga4成等差数列.又manfen5.com 满分网,n=1,2,3,….
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果数列{bn}前3项的和等于manfen5.com 满分网,求数列{an}的首项a1和公差d. 查看答案
如图,△ACD是等边三角形,△ABC是等腰直角三角形∠ACB=90°,BD交AC于E,AB=2.
(Ⅰ)求cos∠CBE的值;(Ⅱ)求AE.
manfen5.com 满分网 查看答案
设OA是球O的半径,M是OA的中点,过M且与OA成30°角的平面截球O的表面得到圆C,若圆C的面积等于15π,则球O的表面积等于    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.