满分5 > 高中数学试题 >

f(x)=|x-a|-lnx(a>0). (1)若a=1,求f(x)的单调区间及...

f(x)=|x-a|-lnx(a>0).
(1)若a=1,求f(x)的单调区间及f(x)的最小值;
(2)若a>0,求f(x)的单调区间;
(3)试比较manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网的大小.(n∈N*且n≥2),并证明你的结论.
(1)先求出导函数fˊ(x),解不等式fˊ(x)>0和fˊ(x)<0,判断函数的单调性即可; (2)求出函数的定义域;求出导函数,从导函数的二次项系数的正负;导函数根的大小,进行分类讨论;判断出导函数的符号;利用函数的单调性与导函数符号的关系求出单调性. (3)将要证的不等式等价转化为g(x)>0在区间(1,2)上恒成立,利用导数求出g(x)的最小值,只要最小值大于0即可. 【解析】 (1)a=1,f(x)=|x-1|-lnx 当x≥1时,f(x)=x-1-lnx,f′(x)=1-=≥0 ∴f(x)在区间[1,+∞)上是递增的. (2)x<1时,f(x)=x-1-lnx,f′(x)=1-<0 ∴f(x)在区间(0,1)减的. 故a=1时f(x)在[1,+∞)上是递增的,减区间为(0,1),f(x)min=f(1)=0 a≥1  x>a f( x )=x-a-lnx,f′(x)=1- f(x)在[a,+∞)上是递增的, 0<x<a,f(x)=-x+a-lnx,f′(x)=-1-<0 ∴f(x)在   (0,a)递减函数, 0<a<1,x≥af(x)=x-a-lnx f′(x)=1-,x>1,f′(x)>0,a<x<1,f′(x)<0 f(x)在[1,+∞)递增函数f(x)在[a,1)递减函数 0<x<a 时 f(x)=a-x-lnx,f′(x)=-1-<0 ∴f(x) 在  (0,a)递减函数 f(x)在[1,+∞)递减函数,(0,1)递减函数. a≥1 时 f(x)在[a,+∞),(0,a)增函数. 0<a<1 时 f(x)在[1,+∞),(0,1)增函数. (3)当a=1  x>1 时 x-1-lnx>0  ∴=n-1-(++…+)<n-1-(++…+)=n-1-(-+-+…+-)=n-1-(-)=
复制答案
考点分析:
相关试题推荐
已知点列An(xn,0)满足:manfen5.com 满分网,其中n∈N,又已知x=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点Bmanfen5.com 满分网,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:manfen5.com 满分网
查看答案
某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第n天的利润an=manfen5.com 满分网(单位:万元,n∈N*),记第n天的利润率bn=manfen5.com 满分网,例如b3=manfen5.com 满分网
(1)求b1,b2的值;
(2)求第n天的利润率bn
(3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.
查看答案
如图,在平面直角坐标系xoy中,抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC、现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0,manfen5.com 满分网)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

manfen5.com 满分网 查看答案
如图,四边形ABCD是正方形,PB⊥平面ABCD,MA∥PB,PB=AB=2MA、
(Ⅰ)证明:AC∥平面PMD;
(Ⅱ)求直线BD与平面PCD所成的角的大小;
(Ⅲ)求平面PMD与平面ABCD所成的二面角(锐角)的正切值.

manfen5.com 满分网 查看答案
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B的大小;
(Ⅱ)求sinA+sinC的取值范围..
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.