满分5 > 高中数学试题 >

已知集合M={-1,1},,则M∩N= .

已知集合M={-1,1},manfen5.com 满分网,则M∩N=   
把集合N中的不等式变形后,利用指数函数的单调性列出关于x的不等式,求出解集中的整数解即可得到集合N的元素,然后利用求交集的法则求出M与N的交集即可. 【解析】 集合N中的不等式可化为:2-1<2x+1<22, 因为2>1,所以指数函数y=2x为增函数,则-1<x+1<2即-2<x<1,由x∈Z得到x的值可以是-1和0 所以N={-1,0},则M∩N═{-1,1}∩{-1,0}={-1} 故答案为:{-1}
复制答案
考点分析:
相关试题推荐
f(x)=|x-a|-lnx(a>0).
(1)若a=1,求f(x)的单调区间及f(x)的最小值;
(2)若a>0,求f(x)的单调区间;
(3)试比较manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网的大小.(n∈N*且n≥2),并证明你的结论.
查看答案
已知点列An(xn,0)满足:manfen5.com 满分网,其中n∈N,又已知x=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点Bmanfen5.com 满分网,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:manfen5.com 满分网
查看答案
某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第n天的利润an=manfen5.com 满分网(单位:万元,n∈N*),记第n天的利润率bn=manfen5.com 满分网,例如b3=manfen5.com 满分网
(1)求b1,b2的值;
(2)求第n天的利润率bn
(3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.
查看答案
如图,在平面直角坐标系xoy中,抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC、现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0,manfen5.com 满分网)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

manfen5.com 满分网 查看答案
如图,四边形ABCD是正方形,PB⊥平面ABCD,MA∥PB,PB=AB=2MA、
(Ⅰ)证明:AC∥平面PMD;
(Ⅱ)求直线BD与平面PCD所成的角的大小;
(Ⅲ)求平面PMD与平面ABCD所成的二面角(锐角)的正切值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.