满分5 > 高中数学试题 >

已知平面直角坐标系中△ABC顶点的分别为,B(0,0),C(c,0),其中c>0...

已知平面直角坐标系中△ABC顶点的分别为manfen5.com 满分网,B(0,0),C(c,0),其中c>0.
(1)若c=4m,求sin∠A的值;
(2)若manfen5.com 满分网,B=manfen5.com 满分网,求△ABC周长的最大值.
(1)先表示出,,再由c=4m代入到中,再由向量的夹角公式可求得其余弦值等于0,进而可得到sin∠A的值. (2)先根据B的值确定A的范围,再用正弦定理表示出BC、AB的长度进而可表示出三角形的周长,最后根据两角和与差的公式化简,根据正弦函数的性质可求得最大值. 【解析】 (1),, 若c=4m,则, ∴, ∴sin∠A=1; (2)△ABC的内角和A+B+C=π, 由 得. 应用正弦定理,知:,. 因为y=AB+BC+AC, 所以, 因为=, 所以,当,即时,y取得最大值.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是    查看答案
设函数f(x)=x•2x+x,A为坐标原点,An为函数y=f(x)图象上横坐标为n(n∈N*)的点,向量manfen5.com 满分网,i=(1,0),设θn为an与i的夹角,则manfen5.com 满分网=    查看答案
把一个长、宽、高分别为25cm、20cm、5cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为   
manfen5.com 满分网 查看答案
一只蚂蚁在边长分别为manfen5.com 满分网的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为     查看答案
已知集合A={x|2x-a≤0},B={x|4x-b>0},a,b∈N,且(A∩B)∩N={2,3},由整数对(a,b)组成的集合记为M,则集合M中元素的个数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.