满分5 > 高中数学试题 >

f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a= .

f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=   
这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x<0等三种情形,当x=0时,不论a取何值,f(x)≥0都成立;当x>0时有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max,同理可得x<0时的a的范围,从而可得a的值. 【解析】 若x=0,则不论a取何值,f(x)≥0都成立; 当x>0即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为:a≥ 设g(x)=,则g′(x)=, 所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减, 因此g(x)max=g()=4,从而a≥4; 当x<0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为:a≤, g(x)=在区间[-1,0)上单调递增, 因此g(x)min=g(-1)=4,从而a≤4,综上a=4. 答案为:4
复制答案
考点分析:
相关试题推荐
设a∈{1,2,3,4},b∈{2,4,8,12},则函数f(x)=x3+ax-b在区间[1,2]上有零点的概率为    查看答案
manfen5.com 满分网程序框图(即算法流程图)如图所示,其输出结果是    查看答案
已知直线ax+by+c=0与圆x2+y2=1相交于A、B两点,且|AB|=1,则manfen5.com 满分网=    查看答案
如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么几何体的体积为    ,该几何体的外接球的表面积为   
manfen5.com 满分网 查看答案
在极坐标系中,圆ρ=2cosθ的圆心的极坐标是     ,它与方程manfen5.com 满分网(ρ>0)所表示的图形的交点的极坐标是     查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.